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Abstract

Most statistical learning studies focus on the learning of
transitional probabilities between adjacent elements in a
sequence, however, other statistical regularities may un-
derpin different aspects of processing language and regu-
larities in other domains. Here, we investigate how con-
junctive statistical regularities (of the form A and B to-
gether predict C) can be learned, and how this learning
is impacted by similarity in representations analogous
to that in unambiguous words, homonyms with mul-
tiple unrelated meanings, and polysemes with multiple
related meanings. We observed that provided the stimu-
lus structure is relatively simple, participants are readily
able to learn conjunctive probabilities and display sen-
sitivity to relatedness among representations. These re-
sults open new theoretical possibilities for exploring the
domain-generality of how the learning and processing
systems merge conjunctive information in simple labo-
ratory tasks and in natural language.
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Introduction
Statistical learning has been proposed as a powerful
mechanism for how individuals learn regularities across
time and space. Foundational work by Saffran, New-
port, and Aslin (1996) first established human sensitiv-
ity to transitional probabilities (TPs) in identifying word
boundaries in streams of auditory syllables. Most re-
search on this subject to date has focused on variations
of TPs such as non-adjacent dependencies (Gómez, 2002)
and visual co-occurrences across scenes (Fiser & Aslin,
2001), illustrating a range of applications for statisti-
cal learning. While fundamental, the various forms of
TPs do not account for all types of statistical regularities
that must be learnt to explain other types of behaviours.
For example, learning something akin to a conjunctive
probability (CP) may be important in explaining how
individuals learn to disambiguate the meanings of se-
mantically ambiguous words in natural language. To
illustrate, the word BAT can refer to either an animal or
to sporting equipment, and the correct meaning of this
word is extracted by integrating the constraints on over-
all meaning offered by BAT with the broader context
(e.g., a discussion about baseball).

The present work sought to investigate several major
issues that relate to learning CPs, as they might relate
to natural language statistics such as those relevant to

word meaning disambiguation. The first was how dif-
ferent elements in a stream could be more or less con-
straining on the expected outcome of a conjunction. For
example, in natural language, knowing that the topic
of conversation is “SPORTS” provides only vague con-
straint on what particular meaning should be evoked in
a sentence. This knowledge therefore provides only low
constraint (high entropy) in determining which particu-
lar meaning should be evoked (e.g., the discussion could
relate to hockey, baseball, etc.). In contrast, the word
“BAT” provides relatively high constraint (low entropy)
on what meaning should be evoked (it should relate ei-
ther to “baseball” or to “flying mammal”). Furthermore,
critical to present purposes, only by combining both of
these elements can a context-specific interpretation of a
word be evoked. Using this analogy to words (which
are low entropy), contexts (which are high entropy), and
context-specific meanings (which are fully determined by
the combination of the previous two elements) we exam-
ined how low- and high-entropy items combined to pre-
dict an upcoming element. In a related vein, we also ex-
amined how the order in which low- versus high-entropy
information is presented shaped performance. How is
the process of computing CPs impacted by having more
versus less constraint early in processing?

Additionally, unlike typical statistical learning re-
search which employs highly and equally distinct ele-
ments during learning, we also explored how representa-
tional similarity could shape performance in computing a
CP and relate to word disambiguation processes. In the
case of natural language, the semantic ambiguity contin-
uum can be broken down into three main subdivisions:
(1) unambiguous words like CHALK which evoke effec-
tively the same meaning in different contexts. That is,
the word itself predicts the meaning with 100% accuracy,
the context does not provide any additional unique infor-
mation. (2) homonyms such as BANK which evoke com-
pletely distinct meanings in different contexts. That is,
the word narrows the meaning down to two completely
distinct interpretations, but context is necessary to se-
lect among those representations. (3) polysemes such as
CHICKEN, which evoke related representations (in this
example, the animal or its meat) in distinct contexts.
That is, the word alone may predict the majority of the
evoked representation, but context is needed to select
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exactly the right interpretation.
With these aims in mind, we developed a variant of

a standard self-paced statistical learning paradigm that
allowed us to contrast standard TP learning with the
learning of CPs between low-entropy items (analogous to
words) and high-entropy items (analogous to contexts)
in predicting a third item (analogous to context-sensitive
meaning). We also employed representations that varied
in their similarity to one another to assess the impact of
meaning relatedness on learning. Performance was as-
sessed using a combination of online and offline measures
of learning. In so doing, we aimed to contribute to knowl-
edge of how a broader range of statistics such as conjunc-
tive probabilities can be incorporated into general theo-
ries of statistical learning. We also aimed to connect this
work with important statistical properties that are at the
heart of other areas of cognition such as semantic ambi-
guity resolution. If successful, this work could open new
possibilities for how artificial language learning experi-
ments using statistical learning paradigms could comple-
ment existing studies of semantic ambiguity in natural
language, for example, by allowing the development of
well controlled artificial languages that avoid the com-
plex confounds in natural language stimuli used to study
semantic ambiguity (Armstrong & Plaut, 2016).

Experiment 1
The first experiment served as a baseline for evaluat-
ing how the learning of standard triplet structures with
perfect predictability (TPs of 1) across successive items
takes place using our specific experimental procedure.
We then use these results as a platform for understand-
ing the impact of ambiguity on processing in subsequent
experiments using variations of the same basic design but
changing the probability structure between elements.

Methods

Participants A total of 60 participants (16 male;
mean age=20) completed the experiment. All partici-
pants were undergraduate students from the University
of Toronto participant pool and were compensated with
course credit. All completed an informed consent and
debriefing procedure.

Materials A total of 48 images of unusual objects
(hereafter, symbols) were the targets for learning in the
experiment. These symbols were selected so as to not
have clear verbalisable labels, and therefore encourage
learning of the statistics between the visual representa-
tions of each element. These symbols were used to create
sequences containing two single-symbol elements and one
four-symbol complex element. Eight such simple-simple-
complex sequences with unique elements were randomly
generated for each participant. The use of varying com-
plexity across visual elements (one symbol vs. four sym-
bols) allows us to assess the impact of visual complexity

per se, and also enables rich variation in the statistical
structure of the relationship between elements and sym-
bols in the subsequent experiments.

Procedure The experiment was administered on
desktop computers using PsychoPy (v1.85.4).

Figure 1: Familiarisation

Familiarisation/On-line Learning Participants were
exposed to 30 randomised sweeps through the eight se-
quences and were instructed to pay attention to the order
of the elements. A fixation cross was presented between
sequences to focus learning on the relationships between
elements (see Figure 1). The task was self-paced and par-
ticipants advanced through the elements by pressing the
space key. The time spent on each element was recorded.
On average, the familiarisation task took approximately
20 minutes to complete.

Off-line Tests Two offline tasks were used to assess
learning. The first was a sequence completion task, in
which participants had to complete a missing element
in a sequence. Participants selected from among four
choices for completing the first and last element, and two
choices for completing the middle element. This corre-
sponded to later experiments where one of the first two
elements had only two valid possibilities. The presented
choices all came from the same position in a sequence,
sampled from among the different sequences (e.g., the
choices were always taken from position 1 when com-
pleting a missing element from position 1). Eight ques-
tions each were asked about the first two elements and 12
questions were asked about the third element. The four
extra questions about the third element in this experi-
ment were only included in order to match the number
of questions used in subsequent experiments regarding
CPs (as described later). Test questions were blocked
by order of position in the sequence.

The second task had participants choose from among
four sequences which was the most familiar. One of
these sequences was actually seen during familiarisation,
the others were made-up sequences that mixed elements
from different sequences while preserving position in a se-
quence (e.g., a sequence would be made up of an element
selected at random from all elements in position 1 across
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sequences, an element selected at random from posi-
tion 2 across sequences, etc.). Sequences were presented
one element at a time at a fixed rate of one element
per second. Six questions were asked: two for coarse-
grained distinction, where all non-target sequences com-
prised entirely unfamiliar combinations of elements; four
for fine-grained distinction, which included a distractor
item containing two elements from one sequence com-
bined with one element from another sequence. Again,
number of questions were matched to those of subsequent
experiments on conjunctive probability. While only one
element is needed to predict a sequence in TP, subse-
quent conjunctive probability experiments will require
looking at two elements together to predict the third.

Results

Due to space constraints, we report only the differences
that were significant at p¡0.05. Error bars in graphs de-
note standard error. For this experiment, it is expected
that there is a speed up between Elements 1 and 2 as the
first element is unpredictable while the second element
is perfectly predictable from the first element. It is also
expected that the last element requires more processing
effort due to higher visual complexity.

Figure 2: Element 0=fixation; 1-3=sequence

Familiarisation The average reaction time (RT) dur-
ing online familiarization to the sequences is presented
in Figure 2. We used mixed-effect linear models with
random intercepts for participants to test for differences
in RT across sequence elements (positions) 1-3. Partic-
ipants sped up between Elements 1 and 2 but slowed
down between Elements 2 and 3 such that Element 3
took significantly longer time to process than Element
1.

Offline Test One sample t-tests showed participants
had learnt all three elements in the sequence above
chance performance in the sequence completion task, as
reflected in their accuracy in questions regarding each
element. Note that due to the aforementioned differ-
ence in number of options at test (but not in training),
chance is 0.25 for Elements 1 and 3 and 0.5 for Element
2 (Figure 3). To compare relative learning across the
sequence, accuracy was modeled with items and partic-
ipants as random intercept. Significant differences were
found among all three elements, with the highest ac-

Figure 3: Solid lines mark chance performance.

curacy at Element 2 and lowest accuracy at Element 3.
However, due to difference in chance level, only Elements
2 and 3 can be directly compared. Above-chance perfor-
mance was also found for all elements in sequence selec-
tion for familiarity. There were no significant differences
between coarse-grained and fine-grained test items.

Discussion

Experiment 1 showed that participants were sensitive to
the statistical properties associated with each sequence
element in the online learning measure. Participants dis-
played good performance (7̃5% correct) on all the ele-
ments in the offline test. Both of these results are consis-
tent with a similar prior study by (Siegelman, Bogaerts,
Kronenfeld, & Frost, 2018). In contrast to that experi-
ment, however, participants exhibited overall slower re-
sponses for the final element in the sequence, which we
attribute to the increased visual complexity of that item.
These results provide an important measure of baseline
performance in the task to evaluate the impact of CP
learning in the following experiments.

Experiment 2
Experiment 2 used the same overall procedure but dif-
ferent statistical relationships between elements to probe
how CPs, as well as different levels of ambiguity, in-
fluence behaviour. As in the case of natural language,
disambiguating information can be precede or follow an
ambiguous word. Hence, two sub-experiments were run,
in which the order of the first two elements were inter-
changed so that the first element either provided high
constraint (low entropy, Expt 2a) or low constraint (high
entropy, Expt 2b) for predicting the final element, which
was the same in both experiments. The experiments thus
evaluated the impact of conjunctive probability learning
and on the order of the more constraining versus less
constraining elements on learning. If people integrate in-
formation in a manner analogous to CPs, it is expected
that they would show slowdown according to ambigu-
ity type, as illustrated by overlaps in sequence elements,
over and beyond slowdown caused by visual complexity.
We also expect differences as a result of informativeness
of different elements. However, whether more informa-
tive elements will be faster to process due to the time to
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hone in on a specific interpretation or slower due to the
number of competing predictions is not clear.

Methods

Participants. A separate sample of 60 undergraduate
participants who have not participated in other experi-
ments were recruited for each of the experiments (2a: 15
male; mean age=19; 2b: 22 male; mean age=19).

Figure 4: Example sequences depicting ambiguity types.

Materials. The same elements used in Experiment 1
were re-arranged to reflect different statistical relation-
ships between the items, both in terms of how well
each of the first two elements predicted the last ele-
ment, and in terms of how distinct the last element is
relative to its counterpart. These sequences were struc-
tured to represent three levels of ambiguity in how the
low-entropy (word) representation merged with the high-
entropy (context) representation. Across two contexts,
Element 3 in an unambiguous sequence was identical,
Element 3 in a polyseme sequence overlapped by 25%

(one symbol), and Element 3 in a homonym sequence
was distinct (see Figure 4). Single-symbol elements were
used for the low- and high-entropy elements (words and
contexts), whereas four-symbol elements were used to
denote ”meanings”, so as to enable studying the effects
of representational overlap. Symbols forming each ele-
ment were randomized across participants.

Procedure The procedure was identical to that in Ex-
periment 1, except the items were re-arranged to have
the conjunctive probability structure outlined above and
illustrated in Figure 4 for Experiment 2a (in Expt 2b, the
position of the low-entropy and high-entropy items were
swapped). The sequence completion task now contained
eight coarse-grain and four fine-grain questions regard-
ing Element 3 (meaning) instead of 12 questions of equal
difficulty. In this experiment, fine-grained questions for
both off-line tests refer to items where the choices given
contain both options corresponding to the two possibly
correct third elements, depending on context. Because
the unambiguous sequences evoke the same meaning (El-
ement 3) regardless of context (Expt 2a: Element 2;
Expt 2b: Element 1), tests relating to the second item
(first item in Expt 2b) were omitted since both context
items were valid responses. This left six sequence famil-
iarity items. Having more trials for one offline task type
was due to our aims of efficiently extracting the learning
of coarse- and fine-grained information.

Results

The analytical procedures were the mostly the same as
Experiment 1, only now we collapsed across performance
of the same ambiguity type and applied the linear model
within each type.

Figure 5: Experiment 2a. Element 0=Fixation; 1=Low En-
tropy; 2=High Entropy; 3=Meaning (left)
Experiment 2b. Element 0=Fixation; 1=High Entropy;
2=Low Entropy; 3=Meaning (right)
U = Unambiguous; P = Polyseme; H = Homonym

Familiarisation Experiment 2a. Figure 5 plots the
results from familiarization for Experiment 2 and 2b.
In Experiment 2a, RT for homonym sequences showed
increase across all consecutive elements while polyseme
sequences and unambiguous sequences showed slowdown
only from Element 2 to Element 3. At the second po-
sition (high-entropy), the linear model for RT against
ambiguity type showed homonym sequences to be sig-
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Figure 6: Experiment 2a (top) and 2b (bottom) offline tests.
Horizontal lines denote chance.

nificantly different from unambiguous and polyseme se-
quences, which were comparable to each other. All three
conditions were significantly different at meaning output
(Element 3), with fastest performance for unambiguous
items and slowest performance for homonym items.

Experiment 2b. In every ambiguity type, RT increased
between consecutive elements. Similar to experiment
2a, there was no difference between ambiguity types in
the first position, but at the second position (now low-
entropy), divergence began where homonym sequences
showed significant difference from unambiguous and pol-
yseme sequences and by the third position (meaning out-
put) all three ambiguity types were significantly different
from each other.

Offline Test Experiment 2a. Figure 6 shows the off-
line task accuracy for experiment 2a and 2b. One
sample t-test showed above-chance performance for all
questions, indicating learning. A linear mixed effect
model showed higher performance for polysemes than
homonyms in the second position (low entropy) but no
other differences between ambiguity types. Participants
also performed above chance for the selection of familiar
sequence. Performance did not differ by ambiguity.

Experiment 2b. All question types had above-
chance accuracy. Fine-grained meaning (Element 3)
in homonym was significantly more accurate than pol-
yseme. There was comparable performance between am-
biguity types for other elements. In the sequence selec-
tion task, performance were significantly above chance
for all ambiguity types. Linear mixed model showed
significant differences between polyseme and homonym

sequences. Furthermore polyseme sequences were sig-
nificantly more affected by the presence of context-
inappropriate foils than homonym sequences.

Discussion

Experiment 2 showed an increased slowdown starting at
the integration of contextual element according to the
increased overlap in interpretations across contexts. In
contrast to the unambiguous items and to the results
obtained in Experiment 1, participants were slower to
respond in the online task when learning CPs in am-
biguous sequences. The amount of slowdown in the on-
line task showed that these effects were modulated both
by the amount of overlap in the meaning representations,
and whether the more informative (lower entropy) item
was presented earlier or later in the sequence. The lack
of differentiation at Element 1 suggested that only with
two elements was there enough information to integrate
in order to predict the third element based on CPs. This
is different from words in context-free tasks (Armstrong
& Plaut, 2016) and tasks with contextual constraints for
natural language (Klein & Murphy, 2001), where we see
ambiguity effects for the ambiguous words themselves.
This might be because participants are trying to inte-
grate words both within and across trials in linguistic
tasks, which would lead to task performance more sim-
ilar to that observed for Elements 2 and 3 here (Klein
& Murphy, 2001). Another possibility is that natural
language tasks, as opposed to current artificial stimuli,
engage in consistent, rapid, and automatic processing
which results in detectable effects for the first element,
whereas the slower and less natural processing of artifi-
cial stimuli do not elicit those effects.

We also investigated whether the slowdown for Ele-
ment 3 was due to information integration per se, or
was due to visual complexity. In a separate experiment
not reported here due to space constraints, Experiment
2a was modified to have four symbols for all three se-
quence elements. We nevertheless still found significant
slowdown between Elements 2 and 3 in polyseme and
homonym sequences. This indicates that the slowdown
observed in Experiment 2 was not solely attributable to
differences in visual complexity for Element 3.

In contrast, the offline tests pointed to broadly simi-
lar performance regardless of the order in which the first
two elements in the sequence were presented, with some
detailed differences (e.g., changes in polyseme accuracy
across Experiments 2a and 2b in sequence selection).
This in turn suggests that the exact time-course of pro-
cessing varies based on whether the more or less infor-
mative element is presented first, but the end result of
processing is a relatively similar (although not identical)
order-independent final representation.
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Overall Comparisons
A striking difference between transitional probability
and conjunctive probability sequences is in the long RT
for Element 1. This may be explained by the ability of
the first element to predict the following two elements in
TP whereas both the first two elements need to be con-
sidered to predict the third in conjunctive probability.

In offline sequence completion, performance of high-
entropy and low-entropy elements were similar for Ex-
periments 2a and 2b in spite of their reversal in position
within the sequence, supporting the hypothesis that per-
formance on an element-level is tied to informativeness
of the element. Generally, performances for offline tasks
showed similar levels of accuracy across all experiments,
suggesting that CPs do not pose much extra challenge
in learning as compared to TPs.

General Discussion
Statistical learning is theorised to be a domain-general
ability for detecting regularities across time and space,
yet the bulk of extant research has focused on learning
TPs between elements. This type of statistic, although
clearly very useful for enabling some abilities like speech
segmentation, is insufficient to understand other abili-
ties, such as how words and contexts conjoin to evoke
context-specific meanings in specific contexts (Swaab,
Brown, & Hagoort, 2003). CPs, although certainly not
capable of fully explain such behaviors, may be an alter-
native form of statistical computation that are critical
for such information processing.

The present research merged a recent statistical learn-
ing paradigm, a self-paced learning task, with new statis-
tical relationships among items that relate to CPs. Our
results showed that CPs, like TPs, are learnable. By
varying the amount of information content (entropy) in
each position in the sequence, we were also able to as-
certain that the order in which high- and low-entropy
elements were presented in a sequence modulated online
learning, but nevertheless resulted in similar patterns of
performance in the offline test. Thus, the time-course of
processing may differ based on the order in which infor-
mation is presented (e.g., whether an ambiguous word
like BAT precedes or follows a disambiguating context
such as a discussion of SPORTS), but the end result of
this processing is similar. Similarly, our manipulation of
the relatedness between the “meaning” elements mod-
ulated performance in both the online and offline task,
suggesting that the microstructure of each element can
interact with the overall statistical regularities in the se-
quence. This suggests that multiple types of statistics
among the individual elements of each sequence interact
to determine overall performance.

This research represents an important proof of con-
cept for how an alternative statistic than TPs can be
learnt, and how such a structure could potentially in-

teract with relatedness of interpretation to shape overall
performance. In so doing, it opens up new possibili-
ties for studying how simple statistical learning princi-
ples could interact with the rich structure of linguistic
domains to explain at least some aspects of complex lan-
guage behaviors such as context-sensitive meaning pro-
cessing. As current models of statistical learning do not
look at the problem of integrating constraints across ele-
ments, the current experiments can serve as a motivation
to look at how this type of probability can be incorpo-
rated into such models. The ability to test even the
domain-generality of some new language processes in a
simple form is therefore very valuable. It also repre-
sents an important complement to existing methods us-
ing natural language, which have their own complexities
in terms of controlling for confounding psycholinguistic
properties. Having a new approach for developing con-
vergent insights into statistical learning of CPs and other
language abilities is therefore likely to be a powerful tool
for advancing theory in related domains.
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