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Abstract

Recent research on the effects of letter transposition inHwdopean Languages has
shown that readers are surprisingly tolerant of these manipulati@sange of tasks.his
evidence has motivated the development of new computational models of readregaihcit
flexibility in positional coding to be a core and universal principle of the reading process.
Herewe argue thasuch approactoesnot capturecrosslinguistic dfferences intransposed
letter effets, nor do they explain thero address 1B issue we investigatechow a simple
domainrgeneralconnectionistarchitecture performin tasks such as lettransposition and
letter substitutionwhen it had learned torpcess words in the context of different linguistic
environments The results show than spite of the neurobiological noise involved in
registering letteposition in all languages, flexibilitand inflexibility in coding letter order
is alsoshaped byhe statisticabrthographicproperties ofwords in a language, such as the
relative prevalence of anagran@ur learning modelalso generatd novel predictions for
targeted empirical researaflemonstrating a clear advantage of learning models for studying

visual word recognition
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In the last decade a large number of studies have consistently reported thataesaders
surprisingly tolerant to letter transpositions. This aspect of visual word recognition, often
| abeled as AThe Cambridge University effect
University showing that readers dotrmare about the order of letteregs been the focus of
extensive researciheated debatesandimpressivemodeling effors. Overall, studies that
experimentally examined the impact of manipulating ledteler on reading performance
have shown a very small cost of letteanspositionsn terms of reading time, along with
robust priming effects when primes and targétare all of their letters buh a different
order(e.g., jugdeJUDGE;Dufabeitia, Perea, & Carreiras, 2007; Johnson, Perea, & Rayner,
2007; Kinoshita & Norris, 2009; Per&aCarreiras, 2006a,b, 2008; Perea & Lupker, 2003,
2004; Rayner, White, Johnson, & Liversedge, 2006; Schoonbaert & Grainger, 2004).
Transposedetter (TL) effects were reported in a variety of European languages such as
English (e.g., Perea & Lupker, 2003rench (Schoonbaert & Grainger, 2004), and Spanish
(Perea & Carreiras, 20083, but also for nofEuropean alphabetic languages such as
Basque (Dufabeitia, Perea & Carreiras, 2007), and Japanese Katakana (Perea & Perez,
2009).

The apparent indifferencef readers to lettelorder converged with experimental
findings such as relative position priming (Humphreys et al., 1990), and subset priming
(Peressotti & Grainger, 1999), amés consequently taken to bénallmark of readinglts
implications to modetig visual word recognition resonatedth mounting theoretical
discussions regardiniipe alignment probleniDavis, 1999), according to whickwvords are
recognized irrespective of the absolute position of their letters (e.g., CAT, TREES®AT)
that thér letter identification must be contexsensitiveand (relatively) position invariant
Becauseprior computational models of orthographic processing encoded letter positions in
rigid and absolute terms (e.g., the Interactive Activation Model, 1AM, McClell&nd

Rumelhart, 1981)and models of orthographito-phonological correspondences made



similar peripheralassumptions aboutigid orthographic coding (e.g., the DtRbute
Cascaded model, DRC, Coltheart et al., 2001; the Connectionist Dual Process Model, CDP,
Zorzi, Houghton, & Butterworth, 1998; Plaut, McClelland, Seidenberg, & Patterson,, 1996)
they were taken to miss a critical component of orthographic processiiugzinessin
coding letterposition This limitation ledthe way fora new generation of ndels that
focusedon producing lettecoding schemes and computational solutions that nemeigid
(e.g., he SERIOL model, Whitney, 2001h¢ SOLAR model, Davis, 1999; th&patal
Coding model, Davis, 2010h¢ Bayesian Reader model, Kinoshita & Nor@§09; the
Overlap modelGomez Ratcliff, & Perea2008).

The new modelsof readingnaturally differin their initial aims and inthe scope of
phenomena they descrildéowever,recentdiscussions regarding tinalescriptive adequacy
have centeretb alarge extenbn their relative abilityo reproduceand fitthe growing body
ofempirical data r egar di-jompling, gien differend typeseos i | i e n-
distortion in the sequence of lette¥¥hile this approachhas advanced us in outligjrthe
possibleconstraints imposed on the freemd of the reading systent,also had acritical
disadvantage From an empirical perspective, consistent findings have shown Tihat
priming effects are not univershit restricted to a family of languag@srost, 2012a). For
example, reading in Semitic languages such as Hebrew and Arabic is characterized by
extreme lettecoding precision (Velan & Frost, 2007, 2009, 2011; Perea, Abu Mallouh, &
Carreiras, 2010) Thus, transposi ngewbriAmbicdoesnotgiéldsa | et t e
strong facilitation of target recognition aslimdo-Europearlanguages, and sometimes even
hinders it (Velan & Frost, 2009, 20%1)Similarly, presenting sentencéisat containTL

words in rapid serial visual presentationulées in strikingly poor reading performance in

! Here we emphasize that letiswdingprecision in Semitic languages is characteristic of lexical and reading
tasks. Norlexical tasks such as the saqiferent tasks do show fuzagtter coding in Hebrew as well
(Kinoshita, Norris, & Siegelman, 2012).

2 TL effects for Semitic words rangeom-11 ms to + 8 ms pending on prime condition. TL effects for Hebrew
non-Semitic words yield facilitation of 20 ms, similar to that of European languages (Velan & Frost, 2009,
2011).



Hebrew but not in English (Velan & Frost, 2007). Recent studies from Korean (Lee & Taft,
2009, 2011) alsindicatethat lettertransposition effects are not obtained in the alphabetic
Korean Hangul as they ane European languages. These cHasguistic differences
regarding the impact of lettéranspositionsare critical for understandingisual word
recognitionand should be taken as important constraints whideleling it Becausemost
recentmodels of readindpaveexclusivelyfocused on languages that show insensitivity to
transposed letter effes, they miss the weléstablishedcrosslinguistic variability in
positional encodingnecessary in a general accouritlore important,from a theor#cal
perspectiveunderstandinghe sourceof differencesn sensitivity to lettetpositionis critical

for assessing the explanatory adequatyny model of reading(see Frost, 2012a for an
extensive discussion).

In the cas®f TL effects, the debateals centered on what it is that determines (or allows
for the emergence pinsensitivity to letter order. Fananyrecent modelers of visual word
recognition the working hypothesis was that théslects a hardwired neurobiological
constraints in coding mition of sequentially alignedisual stimuligiven the inherent noise
characteristiof the visual processing systgsee Szwed et al., 2012; Grainger et al., 2012
Norris & Kinoshita, 2012 For example, in opehigram models (e.g., Whitney, 2001), it is
claimed that the brain encodes words based on the presence of all ordered combinations of
two | etters appearing in a fgmiveas wohe d¢el lge
bi gr fmdnerd @mGoé o f r & n dnd By this view, TL priming efécts mirror the
way in which the human brain encodes the position of letters in printed wordsy
language(e.g., Whitney, 2001Grainger & Whitney, 2004Daha@e et al., 2005 where
letters are often taken dw/o-dimensionalobjects processed by theswal system (e.g.,
Grainger et al., 2012Norris & Kinoshita, 2012 In contrast, in a recent review of TL effects
across writing systems, Frost (2@Lbas argued thdhe overall findings regardindetter

position insensitivity cannot be describedand explained simply by assuming a



predetermined charct er i st i c o f circuitnyethatbproaeissesd arthographicr o
information Rather, it isan emergent particulaconsequenceof the ne ur al system
interaction with thelinguistic properties ofEuropean languageseflecting an efficient
optimization of encoding resourceBy this account, irEuropean languagesinted words
generally (albeit with some exceptions) differ by ttientity of their constituent letters, so
thatdifferent sets of lettrs are assigned to different words. Consequently, printed words can
still be easily recognized even when their letters are transposed. In contrast, in Semitic
languages, words are formed by inserting ecdnsonantal root into fixed phonological
word-paterns (see Frost, Forster, & Deutsch, 1997, for a detailed description), and the root
letters are the initial target of orthograplpcocessing (e.g., Frost, Kugler, Deutsch, &
Forster, 200p Because many roots share a subset of three letters but iferardiforder,
words often differ bythe order of these letters rather than by their mere identity. This €ross
linguistic difference is reflected by the differential prevalence of anagrams irpd&amo
versus Semitic languages: hafteas in English, French, &panish anagrams are mostly
incidental exceptions, in Hebrew or Aralanagrams areery common (Velan & Frost,
2011).

This account provides a very different theoretical explanation to TL effestsifts the
cause of insensitivity to letterder from a hardvired and fixed neurobiological constraint
of the visual/orthographic information processing system, teraargentproperty of the
interaction ofthe neurobiological constraints withdoman-general computational system
that is tuned tahe distributional characteristics of the linguistic environment. By this view,
sincefor efficient reading, the statistical properties of letter distributions of the language
(root vs. wordpattern lettersand their relative contribution to meanihgve to bealetected
readers of Semitic languages become sensitive to letter. drdezontrast,readers of
European languages simply do not require such sensitivitiare thus affected bythe

neurobiological nise involved in processing letteriideed, Velan and Frost (2011) have



shown that even within one language, Hebrew, TL effects can be made to appear or vanish
given the linguistic properties of the printed words that are presented as &eeulbotnote
2). In that study, the authors demonstitéhat when native speakers of Hebrew are
presented wittHebrewprintedwords of norSemitic origin, which resemble base words in
European languaggethe typical TL effectsobserved in European language® obtaned.
The approach osomerecent models of reading thassentiallyhardwire letterposition
insensitivity given the general noise involved in processing visual stirfeud., directly
motivating positing open bigrams as @mputational mechanisno produe@ relative
position primingeffects;Grainger & Whitney, 2004p. 59 is inevitably blind to theseross
linguistic and crosstimuli differences and does not explain how and why crbsguistic
differences are observed

This brings us to th@otential avantage of thepproach advocated by proponents of
learning models. Learningnodels aredeveloped from the outsdb gradually learn a
mapping between representations via dorggneral learning mechanisms (see McClelland
et al., 2010)Thus, n suchmodels a specificbehavioremergesnstead otbeinghardwired
This approach de mphasi zes the tailoring of t he mod
mechanismsand insteadocuses orhow representatiaand processing principles interact
with the statistcal regularities in the environmedtring learning (see Rueckl, 2010, for a
detailed review). The significant advantage of learning models in the context of
understanding visual word recognition and letister effects seems evident. First, the
emphasin generic learning mechanisms is compatible with a broad range of learning and
processing phenomena in general, including but extending well beyond the challenge of
learning to read. Secondariguages differon many statistical properties, such as the
distributions oforthographic and phonological siibguistic units, their adjacent and non
adjacent dependencies, thgstematiccorrelations between graphemes and phonemes (or

syllables),and the type of correlatons between form and meaning through molgdioal



structure (Frost, 2012aNative speakergan pick up on thesecharacteristicamplicitly
throughstatistical learning procedures.g., Frost et al., 2013)A model of reading thais
built using this same set of principles h#serefore, the pential to capture, explain, and
predict empirical phenomena observedaity language and more specifically the observed
crosslinguistic differences in TL effects

Recently, Baayerf2012) has used a related approach to examine how the linguistic
environment shapes sensitivity to letter ordégsing Naive Discriminative karning(NDL,
Baayenet al., 2011), Baayesompared the sensitivity to letter order in Engligdrsus
biblical Helrew, for cases in which wosdfrom thetwo languages were aligned with their
meanings. Baayef2012)demonstrated that pairs of contiguous letteosrélated withorder
informationin the model had a much greater functional load than single letters brewe
relative to English, therelshowingthat greater sensitivity to lettarder emerges iBemitic
languages when nothing but abstraatiscriminant learning principles are considered
Al t hough Baayenb6s model i ng approotdigrams d0 e s
representational units, this choice of input representations does include some explicit relative
position information,rather thanallowing this propertyto be learnedMore importantly,
given the concatenated morphology of Englestg becase transpositiontypically involve
middle lettersrather than initial or final onesigram representationsaturally preserve
morphologicalinformation for English(e.g., the plural suffix)more tharfor Hebrew This
could bea contributing factor to the higher loads of bigrams to meaning in English relative
to Hebrew.A critical question therefore,is whether languagspecific lettestransposition
effects would emerge during learning in a neural network, and if so, howrgid w

From this perspective, learning models are akin to any empirical investigation.
Considering TL effects, the modeler manipulates the statistical properties of the input
scheme, aiming to examine whether sensitivity or insensitivity toHettEr emeges given

implemented changes in the linguistic environment. The present paper offers such an



investigation. Our aim was tproduce a simple and readtyeneralizable neural network
model that demonstrates how differences in the statistical propertielse ofanguage
naturally lead to differences in TL effects as a resuRiwiple errordriven learningln the
following, we describe a multayer neural network that maps orthographic inputs to
semantic outputs. The use of a relatively generic archited¢tare was intentional to
emphasize that the results we obtained do not dependhahlg-tailored set of learning,
representationand processing principlethat have been developed for capturing a specific

and narrow set of data. In so doing, we havelemgnted afundamentalistmodel of
readingskills acquisition that intentionally eliminates irrelevant complexity and focuses only

on the effects of letter identity and letter position (see Kello & Plaut, 2003; McClelland,
2009 for a discussion of this apach). his model was trained on Hebrew orthography or
Englishor t hography and its fAbehavioro -wads t hen
that diverged from the original ones by means of letter transpositions or letter substitutions.
Two different vesions of these simulationgere run.In Simulation 1 input words were
represented usingcodingscheme that orthogonalized the identity and posititarmation
Accordingly, we treated each letter and its position as independent featfieesvord and
simulatednoise in the positional unitsy makingthe positional information less readily
available than the identity informatioihis representation scheme allowed uglit@ctly

i nvestigate some of 't he chadinpatculaniisdifierent s o f
treatment ofposition and identity information when learning the orthograptig-semantic
mapping.In Simulation 2, we replicated these findings udingwell-known, biologically

driven coding schemef the overlap mode{Gomezet al., 2008)to demonstrate that the
outcome of the simulations is not inprdde dependent bQutather,reflects general learning
principles.Each of these twesimulationswas further divided to twdifferent examinations

the firstused highly simplified wrdsthata | | owed wus t o e xaionunder t he

tightly controlled settingswhereas in the seconthe samenetwork was tested omeal
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Hebrew and English words, thus allowing the examination of the model in realistic settings

that mimic the true linguistic environments of English and Hebrew

Simulation 1: Word representationswith i ndependent

identity and position information

Simulation l1a: Artificial w ords

To evaluate whether differences in word structure in Semitic sétatopean languages
shape sensitivity to letter order, we began our examinations with a set of artificially created
words. These words were intentionally simplified to allow us to focus on the main linguistic
difference between Hebrew and Engliglinich we presumedies atthe heart oletter order
sensitivity The statistical properties of letter distributiotigat differentiate betweewords.
Two sets of words were-ltlkernefsere-bardeat edle ban
the Englishl i ke set, there were no anagr ams, and
uniquerandomcombination of letters. In the Hebrdike set, a givertombination of letters
occurredn two orders in two different wordsesulting in a gbstantial number of anagrams.
Taken together, these simulations were aimed at investigating the differential influence of
identity and position information that emergelsen the same network architecture learns to

map orthography to semantics in the two different languages.

Methods
Network architecture

In this simulation, e network architecture maps separate position and identity
orthographic input representationsit®@ semantic output representations. The specific
architecture of this network was inspired by the sealbwn architecture of Rumelhart and

Todd (1993; see alddcClelland& Rogers, 2003 In particular, the architecture allowed for
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the preprocessing ofnputrepresentations of the identity apdsitono f a wor ddés | et
two separate 200nit hidden layers before this information was combined in a second 200
unit hidden layerwhich ultimately feeds into a 2@@hit semantic output layer (see Figure
1a). This architecture, as in the original Rumelhart and Todd model, allows for the separate
examination of the hidden representations that emerge in thédifictn layes ( 61 dent i ty
representationlaye a n d 0 P mepresdniatmmayed in Figure 1) prior to their
intermixingi n t hger ad li notNotel treatyoearrciioicef architecture which separates
identity and position codinds not an explicit claim regardingseparate encoding of these
two sources of informatiofseeSimulation 2 for redts using a more biologically plausible
architecturewithout such an explicit separatijorRather, this separation was intended to
provide clearer insight into the relative contribution and effects of the two sources of
information letteridentity and leer-position,under the constraints imposed by the structure
of the two different languages.

In this simulation and in all subsequent simulatiohs,riet input of each unit in a layer
in the network was the sum of the activity of the units connectédrtahe previous layer,
as well as that of a bias connection, multiplied by the connection weights between these

uni t s. A unitds output was a sigmoidal func

Training Patterns.

Orthographic and semantic representations were gederfar 1000 fiveetter
fiwordsd for each of the two languages. Fietter words were chosen here because they
correspond, approximately, totypical word length across experiments studying TL effects
in both languages (e.g., Velan & Frost, 2009; Perdaigker, 2004). In the Englislike set,
each word was comprised of 5 different letters chosen randomly with equal probability.
Critically, no two words in this set of 1000 contained exactly the same set ofdetiertsis,

there were no anagrams. In thelifewlike set, an initial set of 500 words was created per
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the same generation procedure as for English, but the remaining 500 words were created by
shuffling the letter order of each of the initial 500 words to generate an anagram. Note that
this choiceof input was deliberately designeéd highlight the main difference of interest
between the languages; it therefore drastically simplified all other characteristics of real
English and Hebrew words, such as different word lengths, specific statisticalritezgiof

vowels and consonants, or the existence of letter repetitions ésle thre included in

Simulation 1bwhichis trained orreal words).
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For each word in the training vocabulary, the visible (i.e., input and output)
representations were generated as follows: The identity input representation contained 26
units, one ér each letter in the alphabet (including for the Heblikes stimuli. The true
number of Hebrew letters 221 is captured in later. See the Supplementary Materials for
discussion of simulations showing orthographic density is not driving the effects). Th
representation of a wordbés |l etters in the id
each letter that was present in a word to 1 and clamping all of the other units to 0. For
exampl e, in the word o6t ablkab)] antedhweuldassumes r epr
the value 1, while the rest of the units would be silent.

Coding of lettetpositionwas designed such that it prevents the input from artificially
biasing the network into finding orthograpti@esemantic mappings that make usk
identity-positiondependencies. As such, any dependencies found by the network by the end
of training would necessarily result from the need to accomplish the mapping task rather
than due to an initial bias the input. To accomplish this, we have dsa coding scheme
that completely orthogonalizes tip@sition information from the idetity information (in
contrastto severalprevious methods afrthographiccoding such ashigramsor trigrams).

The position input representation contained 25 unitsd ats coding was based on the
apmbetical orde)y. (Ao de n dppsitiddgeprdsentation, dhé Bve

letters in each word were first arranged according to trdierin the alphabet. Each letter

was then assigned a rank based on its position in the word. For instance, in the word 'table’,

ais the earliest alphabetical letter within the existing letters and is positioned at locdtion 2,

is the second and positionet location 3, and so ofSee Figure 1b foexample}

Therefore, the letter order for the word 'taideoded as B3-5-4-1. Conversely, in the word

‘bleat’, containing the same letters, the ondecoded as 4-3-2-5. This code was then

translated t@ binary representation of letter positiorfive five-uni t A sl ot s o0, eact

coded for the position of one of the letters in the word. The coding of a specific position was
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accomplished by clamping on the unit whose position in theuineslot orresponded to
the desired analog position, while clamping all other units off. For example, '5' was coded as
00001 in the fiveunit slot, '4' was coded as 00010, and so on. This coding system separates
the letter identity information and the letf@siion information in a nofsredundant way.

The input representation of each word was associated with ar20@emantic
output representation that reflects the arbitrary nature of orthogrpb@&mantic coding.
The semantic representais consisted ofparserepresentatiomorganized per a categorical
structure (see Plaut, 1997). Specifically, an initial set of 40 category protoigres
created, each with 15% of the semantic units turned on. Each of these prototype
representations were then distortgdregenerating each semantic feature with a probability
of 0.15 using the same initial 15% sparsity, under the constraints that each semantic pattern
needed to be different from every other semantic pattern by at least three features, and that
every patern needed to have exactly 15% of its units turned on (this reduces irrelevant
variability across exemplars). The same set of semantic representations was used for both the

Hebrew and English items.

Noisy Positional Encoding

The input patterns, as detad so far, are structured such that identity and position
information are equally accessible to the network. Independent neurobiological evidence
indicates, however, that position information is fuzzier than identity informdtiorany
language due toinherent characteristics of the visual system (e.g., Martelli, Burani, &

Zoccolotti, 2012; Perea & Carreird¥)12; see Gomeet al, 2008, for discussion).hus,the

% This coding system could be seen as partially implementing astasion of the temporal coding scheme by
Davis (2010), which, too, maintains the orthogonality between identity and position. It thus avoids- context
dependent representation of serial order such as itatlimg or coding based on bigrams (see,efcampe,
Dehaene, Cohen, Sigman, & Vincki@Q05. However, it could potentially lead to some spurious correlations
between otherwise orthographicaliprelated words (e.g., the word 'whisk' and the word 'table' have the same
order code, B-5-4-1). Nonethelessbecause the magnitude of this correlation does not systematically differ
between the languages, this does not affect any of the findings reported here.
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contribution of identity information should outweigh, to some extent, that of position
information,for all languagesbecause of simple reliability consideratiomberefore, in all

of the following simulations wensuredthat the letteposition information would be less
reliable than letteidentity information In simulation 1, thiswas achieved bydirectly
scalingdownthe contribution of the position representatimn80%t elative to the identity
representatiofi.e., instead of a binary 0/1 input,eltpositionlayer now contained a binary
0/0.2 inpu}. The choice of the specific &g value was arbitrary as our goal here was
simply to investigate theyualitative impact of reducing the contribution of positional
information in the two languageS&uch scaling down partially corresponds to the 'letter
position uncertainty' previousuggested by other studies (e.g., Davis, 2010; Gomez et al.,
2008) because in biologicathgalistic settings containing noisy conditions, a lower degree
of signal inherently becomes more susceptible to coding ®lr@an also be thought of as
represeting a lower degree of attention given to the position of letters in a word compared
to their identity (see ServeBchreiber, Printz, & Cohen, 1990, for a related propdsa
additional control simulations withother noise implementationand without nose
altogether seeSupplementaryaterials).

From the computational perspective, we hypothesized that because English can
essentially rely on identity information alone to activate a correct semantic representation,
the network will primarily learn to rely on this stronger source of information wegoping
from orthography to semantics. This is because the activation of units in the network, and by

proxy, the magnitude of the weightljustments during erralriven learning, are made in

“* Within the context of a connectionist network, if noisy position coding is assumed to be a fixactetistic

of the visual/orthographic input, this would essentially lead to competition between the units coding for the
correct slot (the signal) and the adjacent units (the noise). Assuming that the noise is normally distributed
across adjacent positis, with a sufficient number of learning trials the network could converge on the mean
difference between the signal and the noise, per the central limit theorem. Thus, instead of simulating the noise
directly, it is possible, instead, to focus on a aarasequence of the noise by simulating the mean difference in
network activity between the signal and the noise in the network. Assuming that the default network represents
a nanoise network, increasing noise should lead to smaller differences betwesgrtal and the noise, and

hence reduced activation in the input representations for-tatier. A more direct but more computationally
expensive implementation of noise is presented in Simulation 2.
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proportion to the input that they receive from other units (seadhart et al., 1986). If the
contribution of positional information is scaled down, the network will primarily activate a
semantic representation based on letter identity, and will make weight adjusstimnt
primarily improve the mapping of the idestiinput onto the semantic output. Effectively,
this will cause the network to rely more on identity informatioraking it less sensitive to
transpositionsin contrast, we hypothesized that in Hebrew, the network would learn to rely
more strongly on posdnal information despite the initial scaling down of the activation of
the positional input representati@reflecting neurobiological noise). This is because error
driven learning will fundamentally not be able to learn to correctly activate a semantic
representation for Hebrew words without the information from the position input, due to the
fact that many words are anagrams. Consequently, the only way by which error will be
reduced for the pairs of words that form an anagram is by adjusting the weights
network to place a greater reliance on positional information in activating semantics. Thus,
we expected that over the course of training in Hebrew, the network would learn to
overcome, to some degree, the reduced contribution of positional ini@nr{ia., it would
functionally reduce the neurobiological noise in its internal representati@ueh a finding
would be in line with the general claim that Hebrew readers implicitly learn to encode
relatively precisdetterposition given the statisial structure of their linguistic environment

(Frost, 2012a, Velan et al., 2013).

Procedure

Training. All weightsin the network weranitialized to small random values drawn
from a uniform distribution of range(.01 0.01]. The mean of the distributitor the bias
connections was set tt.73 so that the mean semantic activation at the onset of training was

0.15, corresponding to that in the target semantic representgiionstrong & Plaut, 2008)
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The training method followed standard proceduresiusprior modeling investigations
(e.g., Plaut, 1997; Plaut & Gonnerman, 2000he network was trained by presenting each
input and allowing activation to feed forward to activate a semantic output. This semantic
output was then compared to the targetput for that word and error was calculated using
cross entropy (Hintgnl989). Error was accumulated across all of the words in the training
corpus and weights were adjusted based on the accumulated error after a full sweep through
the corpus. Weightadjustment wadased on the deHlaardelta variation of the baek
propagation algorithm (Jacobs, 1988; Rulimart, Hinton, & Williams, 198K using a global
learning rateof 0.0001, momenturof 0.9 and decay of 0.00001. The local learning rate for
each weigt was initialized to 1.0 and adjusted over training with an additive increment of
0.1 and multiplication decrement of 0.9 (see Plaut, 199he network was trained until a
homeostatic stopping criterion was reached, wherein the effects of weight decay w
effectively cancelling out the effects of emdniven learning (Armstrong, 2012). Per this
criterion, training stopped once two criteriawere nfet.:r st , each wordés ort
activated a semantic representation for which each semantiwasiwithin 0.5 of its target
value.Thus, thesemanticrepresentation produced by the netwaks always most similar
to the correct semantic output for each word than it wiset@emantic representatiohthe
other words in the training corpus. Sedpthe slope of the error function was required to be
nearzero (when the average error reduction across two successive batches of 100 sweeps
through the training corpus was less than 5%). Approxim&@@0 sweeps through the
trainingcorpus were requickto reach homeostasisEnglish, an®,800sweeps in Hebrew

Testing Testing involved freezing the network=d
network's output when exposed to two main kinds of novel inputs: nonwords created from
the training words eidr via lettertransposition or lettesubstitution(s) In the letter

transposition case, two of the internal lett@esters 2, 3, or 4)n arandomly chosenvord
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from the training seswitched locatiors In the lettersubstitution case, one or two ofeth
internal letters irm wordwerereplaced with different lettefsee Velan & Frost, 2009). The
letter substitutions were constrained to not involve repeating any letter from the original
word. All of the test stimulihat were createdlere unique and nqiart of the training set. A
total of 1000 inputs wereandomly constructed as described above for each of the three
testing sets (transpositiortlditer substitution, 2etter substitution).

After presenting each testing item to the netwar&,calculatedhe correlation between
the semantioutput activated by this testing itemmdthe oneactivated by the base iteim
the training sefrom whichthe testing item waderived(e.g., the correlation between the
outputs to 'table' and 'talbeThis correlation was taketo reflectthe degree of facilitation
that the modified word would induce on the original wdsge Perg & Lupker, 2003, for
the effect of lettetranspositions on semantic activation, and Seidenberg & McClelland 1989
for the paallel between reaction timesd similarity measure$) TL priming effects were
calculated as the difference between thean correlations of théettertransposition
condition and themean correlations of thé-letter substitution conditiorthat servedas
baseline (sing the ZAetters substitution condition as baselideesnot significantly change
any of our resulds

The whole procedure was carried out twice to assure robustness of the results to any
differences stemming from randomization of word siiinor initial weights §imilar toPlaut,
2002. All reportedresults are averaged over these two runs of the simulation.
Results

Mean correlationdetween the semantic representations activated by the Emglish

Hebrew wordsand those activatedby the same words with eithéttertranspositios, 1-

®In here and in the rest of the simulations, trasgons could include both adjacent and +amfjacent letters.

The only exception is Simulation 2b where we examined interactions between word length, TL priming and
language using the overlap model coding scheme. Since that investigation was seribiivistance between
letters, only adjacent letters were used to dismiss irrelevant biases due dengid

® Other measures of similarity between vectors besides correlation, such as Euclidean distance-and cross
entropy, were applied in additional sifations (not presented) and yielded similar results.
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letter substitutiog or 2-letters substitutiomare presented in Table( 6 Ar t i f i .As al wor
hypothesized,dramatic crosslinguistic differences emerged in the letter transposition
condition, wit the EnglisHike inputs being less sensitive to the transposition manipulation
compared to the Hebrelike inputs. In contrast, there was almost no difference between the
languages in either of the substitution conditibifie TL priming effects, calcated as the

difference in the mean correlation between the ketegrsposition condition and the letter
substitution condition with a single substitutiémg., Velan & Frost, 2011jare plotted in

Figure 2 showing muchstronger priming in English comparéo Hebrew It is especially

notable that TL primes in the Englidike set are producingsemantic outpstthat are

extremely similar tahose produced bie original word stemg ¢ 0.99), indicating that the

network has learned to be virtually insei&tto such transpositions. This result fits well

with masked priming experiments demonstrating similar priming effects for identity versus

TL priming (e.g., Forster et al., 1987), as well as the ease by which subjects are able to read

full English paragrghs made up almost exclusively of transpeletr words (the
ACambridge University effecto; see Velan & F

paradigm).

Representational differences betwelentity and position

To furtherunderstand why the default and noisy conditions produced differential TL
effects across English and Hebrew, we conducted additional investigations that contrasted
other network properties. In particular, we focusedhow well the network was able to
distinguish between the different words the two linguistic environments based on its
internal representations of word identity and position, as coded in the identity and position

hidden layers.

" In all simulations reported, the effect sizes were considerably larger (typically more than one order of
maghnitude) than the standard errors, obviating the need for detailed statistical analysis.



21

Letter 1-Letter 2-Letter | TL priming
transposition | substitution | substitution effect
Englishlike 0.99 0.16 0.06 0.83
Simulation
la Hebrewlike 0.59 0.16 0.07 0.43
Artificial
words
English words 0.87 0.13 0.05 0.74
Simulation
1b: Hebrew words 0.53 0.09 0.03 0.44
Real words

Table 1: Correlationsbetween primes and targetnd the TL priming effedipr English
like and Hebrewlike stimuli in Simulation 1&artificial words) and Simulation 1kreal

words).
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Figure 2. TL priming effects in the model trained on artificial wo(8smulation &).
Priming effects were calculated as differenceaveragecorrelation coefficientbetween
the transposed andlgtter substitution conditiond he error bardn this figure and all
subsequentduresrepresent the standard error of the meameraged across the two runs
of the simulation.

To
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net wor koés

ability to

di fferen

position information, we measured how far apart the internal representations of identity
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and, separately, ofggitioni were from each other. This was accomplished by calculating
the mean Euclidian distance between the hidden representations of identity and position
across all pairwise comparisons of the words in the training corpus. The larger the distance,
thenrore distinct each representation i s, and
for the subsequent layers to use in activating a particular semantic output. First, as a
baseline, we calculated the mean pairwise distances in the position andy ident
representation layers before training, and established that these distance scores were near
zero in all cases (a logical outcome, given that the strong negative bias led to only small
mean levels of activation for all words in the hidden layers, amt po training, the
differences between hidden representations are due strictly to the random initial weights).
We then repeated these computations at the end of training to see its impactsultseare

plotted in Figure 3

Letter-identity Letter-position

8 T T
B English-like
7t = + [ |Hebrew-like

Mean pairwise Eculidean distance
=

Figure 3. Mean pairwiseEuclidean distances between the representations forimed
identity andposition The error bars represent the standard error of the mean across the two
runs of the simulation
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As can be seen in the figufggth English and Hebrew show similarly separate internal
representations of identityn contrast, there were major differences in the mean distances
between theposition representationfor English versus Hebrew. This atributable to the
fact thatdifferent positionrepresentations must be generated for at least the anagrams, so the
network must develop distinct (and reasonably distant) intgosition representations in
Hebrew.In contrast, in Englishthe positionrepresentation is not necesséw complete the
mapping because each word has a unique identity input representation. Consetleatly,
than a necessitypositioninformation isno more tharust a helpfulbut optionalinput for
facilitating the mapping Because the reducgabsitioninput leads to a reduced error signal
being backpropagated to theposition input representation, learning to ug®sition
information is much slower (i.e., harder) than simply solving the ioptgut ma@ping via
the identity pathway(where learning is &st due to the large input activations and
correspondinly large backpropagated errors). Therefore, the network favors the identity
pathwayand does not learn to differentiate well between the position representdions.
sum up,the results showthat whe position informationof English words is fuzzy (i.e.,
reduced), it is not representeckll in the network; in contrast, position information of
Hebrew stimuli is always representegiasonably well(see Supplementary Materials for

more cetails).

Discusson

Whereas Englishand Hebrewlike inputs were effectively identical in the magnitude of
the priming that they generated in letseibstitution conditions, the TL condition produced
substantially greater priming in English than in Hebrew. This is cemsiswith our
hypothesis that simple variations between the statistical properties of English and Hebrew
words, as extracted by a simple learning model, are sufficient to prapladeatively

similar effectsto the onesobserved in behavioral TL priming experimegsg., Velan &
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Frost, 2011; Perea & Lupker, 2003 hus, our results suppotthe notion thatncreased
position sensitivityemerges durintgarning when the linguistic environmeetjuirest.
Simulation 1a wa focusedn simple artificial vocabularies that qualitatively capture the
fact that in English, there are virtually no anagrams, whereas in Hebhrewgyans are
highly frequent However while enabling us to examine the premises of our approach by
focusimg on the key network properties that underlie TL effabts simulation used
relatively small vocabularieshade ofhighly controlledsets of artificialwords that do not
fully reflect the richnesand complexity of English and Hebrelm the next simulatin we
turn toamore stringentest of our theoretical claimsy using inputswith greater ecological

validity.

Simulation 1b: Real words

In Simulation 1bh we extenad our modelto investigateTL effects obtained foreal
Hebrew and Englistwords in linguistic environments that mimic those of English and
Hebrew Thus, thke words chosen for the simulatiowere sampled to reflect the actual
statistical propertie®f English and Hebrew on a number of metrics (eagprd length,
frequency), but most iportantly in terms of theeal distribution of anagrams as a function
of word lengthin the two languagesin so doing, tis simulationallowed usto investigate
two important additional issues. Firgtallowed us teevaluate whethethe effects obsena
in Simulation 1a are not due to some artifact related to the simple and relatively small
vocabulary usedthus Simulation 1bgeneralized our findingsto the real statistical
properties of Hebrew and Englisisecondthe simulatiorenablel more directcomparisons
betweerour findingsand empirical TL effects by allowing us ¢omparethe stimuli used to
produce TL effed in English and in Hebrew ofactors such as word length andgdord

frequencieghatcould bias thempirical (and computationaigsuls.
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Methods
Training patterns

English and Hebrewwordsused in the simulationWe selectedwo large corpora from
which to draw he English and Hebrew stimullhe Englishwords were taken from the
SUBTL word frequency database (Brysbaert & New, 2008e Hebrewwords were taken

from the Plautand Frostdatabasehttp://wordfreq.mscc.huji.ac.il/index.htl Effectively,

these corpora sample the full span of words that are used in bothlafgo@gesincluding
words in singular and plural form, inflectegbrds with prefixes and suffixes, and sa ®o
avoid introducing very lowrequency words that are not known by many native speakers of
English and Hebrewwe then filtered these corpora st they only contained words with
frequencies greater than or equal to one per millidns left 17,530 English words and
61,383Hebrew words as our base lifitsm whichwe drew thesamplego train the model&
The number of anagranis these basedtswascomputedseparatelyfor each word length,
in number of letrs, in each of the languag@églditional details regarding the distribution of
anagrams as a function of word length are discussedand presented in Figurb.5

Training vocabularies for Hebrew and English consisted of 3000 words each that were
randomly sampled from the base lists, ensuring that the sample sets had tieogpamion
of anagramsas the base listsThis was accomplished bgampling the correspondi
proportion ofoccurrence ofanagram pairs (e.géacth cca), anagrantriplets (e.g.,ared
eaf Gra) and so onas well aghe occurrence olords without anagrams at adeparately
for each word lengti{with total number of words of a givennigth proportional to its
prevalencein the base list).The likelihood of sampling apecific word without any
anagrams was proportional to the frequency of the word; similarly, in the case of anagrams,

the likelihood of sampling apecificset of anagraswas proportional to thenultiplication

8 The abundance of clitics in Hebrew is directly responsible for why the Hebrew set contained many more
items than the English set. For example, many prepositions, pronouns, possession adjectives and conjunction
words are spelled in Hebrew as letters thataalded to the base word, thus considerably increasing the total
number of words.


http://word-freq.mscc.huji.ac.il/index.html
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of the frequencie®f all of the anagranwordsin thisset( e. g . , the frequenc
mul tiplied by the frequency of bact b6 were e
frequencies of other anagram pairs, st édogd and Ggody etc).” Note that he final
samples had a meavord frequency of 250.31 per million iBnglish and 92.1@er million
in Hebrew This difference stemed from the fact that individuaHebrewwords are less
frequent than English wordsecause of their morphological complexity (e.g., there are
separate words t hat imHelrew wheheas insEadiish thia meaning s he s
would be communicated via two worded t he wor d 1 ssaftequenoyoul d h
i ncrement ed svidhtedn adrod hi dithe § aHbvever beeause hothount er
networks were trained to the same homeostatic criterion (i.e., all words had to be well known
and the mean error in the network was stable) mhésan difference is superficial and
irrelevant to tle analyses of the trained netwddee Supplementary materials for additional
analysis of the effect of word frequency in our model)

Network architectureand representationsThe network architecture was, in abstract,
identical b that employed iniSwulation 1a, although someninor changes were necessary to
accommodate the representations of real words, which were more numerous and varied on a
number of properties (e.g., word lengthjhese changes were as followBirst, ©
accommodatehe larger training corpusll the hidden layer sizes weincreased to 500
units. Secondthe letteridentity inputlayer was slightly modified to allow it to accurately
reflect the actual lettadentity propertiesn English and in Hebre\(26 lettersn English, 22
letters In Hebrew) Additionally, to allow for the representation of repeated lettéms,unit
activations in this layer could be set to integer values (/&/2/3/etc. instead of only 0/1)
that reflected the number of times a letter occurred in a viobmr e x a napniney, 6 ,i nt héen

units representing a6 and o0yo6 would have their activat

° An alternative for multiplication of frequencies is to use average of frequencies. We hypothesized that
multiplication is more justified here since it reflects the prolitsitwf choosing ALL of the anagrams of a

certain letter string. In practice, however, there was almost no difference in the distributional characteristics of
the selected set when using either of these methods.
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unit representing 6nd6 wblaieltltthis ehange alsdlleveda ct i v at
the identity input to hava different identity representatidnor wor ds | i ke o6end?ad
which otherwise containethe same letters but for which the number of occurrencescbf e
letter are differentSimilarly, the letterposition input layer was modified to allow for the
representation of repeated charactmgl varied wordength This was accomplisheds
follows: Instead ohaving25 units asin the previous simulation@.e., 5 slots * 5 units}the
letterpositioninput consistedf 256 units (L6 slots*16 units per the maximum word length
in English;in Hebrew, the longest word contained 14 letters so the last two slotseere
used).Multiple appearances of a letter were cotgdsettingall units correspondmpto the
positions of this letter in the designated setactive and the rest silenfFor example, the
letter n i n t he wor d 6nanny 6 -unitastot 1@100608@D000AG t h t h
(corresponding to appearing in tha® 39 and &' positions) In unused slots for words with
fewer than 16 lettersll unit activations were set ta Binally, asin Simulation 1aposition
information wasscaled down from 0/1 to 0/0.2.

The target semantic outputs for the words were generated using the stmé me
descibed for Simulatiorla; only the number of category prototypes was increased from 40

to 120, proportional to the increased size of the training set

Procedure

Training. The training and testing procedures wedentical to those described in
Simulation 1a, with the exception thaduring training, the error for each word was scaled
proportionally to logg(word frequency+ 1) (see Seidenberg & McClellanti989, Plaut et
al., 1996, for related approached)he English network reached the training criteriftera
approximately 23,000 epochs and the Hebrew network reached the training criterion after

approximately 25,000 epochs.
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Testing. Test stimuli for both the letteransposition and lettesubstitutionconditions
werecreatedoy modifying internal letters withia word and only for words with foletters
or more(words with three or fewdetters do not contain enouggtters to generate internal
letter transpositior)sFacilitation effects were compdas in Simulation & Also smilarly
to Simulation1a, the whole proceduré including the creation of the training and testing
samples anthitialization of the weightd wasrepeatedwice andthe reportedesults reflect
averageoverthe two runs.

Results and Discussion
Facilitation effects for letter transposition and subttins are presented in Talle
(Re al w. 0 Ire tesulisindicatethat the samegualitativeeffectsobserved irSimulation
lawith artificial words werereproduced when the network was trainedreal words. The
same was also true for the magnitude of TL priming effects and the Euclidian distances

between the identity representations and position represent@emBigure 4).

Transposed-Letter priming effects Representation distances

1 10 ‘ ;
0.9 Bl English ol I English
| |Hebrew | |Hebrew
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TL priming (transposition minus substitution

0 0 L

Identity Position

Figure 4: Transposedetter priming and pairwise Euclidean distandetween
representations for the real English anélbtew words used in Simulation.1b
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We next examined the primirgffect separately for words different lengths. There
were two main reasons fperformingthis analysis: First, thiebrewstimuli list was mostly
comprised of words with four to eight letters whergagnglish words withnine lettersor
more were alsorelatively abundant Consequently, & wanted to make sure that this
difference was not responsible fohe different TL priming effects observed across
languages. Second, it is known thafL priming is strongerfor long words compared to
short ones (andn fact, is typically only studied in words witHive or moreletters see
Forster et a).1987; Schoonbaert & Grainger, 2004)e thereforeexamin& whetherthis
interaction betweedL effects and word length was present our simulated data. To
investigatethis issue we computedthe TL priming effectsseparately for wordswith
different numbers foletters The resultsare plotted in Figure & As can be seen, the
difference in priming between Hebrew akdglish was not due to word length since the
same qualitative difference is apparent for each word length condition in isolation. In
addition, thefigure shows that TL priming indeed incredder longer words, consistent
with otherresults in the literature (Schoonbaert & Grainger, 20@dyeover, the magnitude
of the TL priming effect interacted with word length and language: For shorter woeds, t
TL priming effect was moderately large in English but very small in Hebrew, whereas both
languages show relatively stronger TL priming effects for very long words (although,
importantly, the effects always remained smaller in Hebrew relative to Englishpur
knowledge, this 3vay interaction represents a novel finding that emerges from the
simulations reported here, which has not been yet addressed in empiricdlnguaissic
studies.

The simulation also allowed us to examine to what extent tlsslonguistic
differences between Hebrew and English in TL priming could be due, to some extent, to a
word-length confound across studies. Examining the commond lengths used in

empirical studies in the past, we found that, indeed, some differencegideat: studies of
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TL effects in English have generally used words with lengths ranging from 5 to 10 letters
(Davis & Bowers, 2006; Forster et al., 1987; Lupker & Davis, 2009; Perea & Lupker, 2003;
Schoonbaert & Grainger, 2004), whereas analogous studidebrew have mostly used
somewhat shorter words with lengths e6 fetters (e.g., Velan & Frost, 2011). We therefore
examined how these differences in average word length in empirical studies of English and
Hebrew TL effects may have impacted the magte of the TL effect differences between
languages in our simulations. To do so, we computed leegthicted TL priming effects

for English words that contained1® letters, and Hebrew words that containedl IBtters.
These lengthrestricted TL primmg effects showed a slightlgtronger crosslinguistic
difference than those reported earlier: there was a 0.75 TL priming effect in English but only
a 0.41 TL priming effect in Hebrew. Our simulations, therefore, suggest that the variations in
typical wod-lengths across studies in the two languages do contribute to the differences in

TL priming effects, but are not the main cause of clioggiistic differences in TL priming.
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Figure 5: a) Transposed._etter Priming of English and Hebrew words as a funcof
word-length.b) Proportion of anagrams relative to all words of a given length for English
and Hebrew.

To understand the cause thfis interactionbetween TL priming effest word length,
and languagewe conducted additional analyses of hatistical properties of English and
Hebrewstimuli, motivated by the results of Simulations R&call thatm those simulations,
word length was fixed and so the only way in which the stimuli could differ was in terms of
the different orthographic inpwtructure that we introduced by creating an anagram for
every Hebrew word and not allowing anyagnams for English wordsVe therefore
hypothesized thathe threeway interaction between TL priming effects, word length, and
languagen Simulation 1bcoud be due to a large difference in number of anagrams between

English and Hebrew for short words and a much smaller difference for longer Words.
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probe this issue, we examined htive proportion ofanagrars out of the total number of
words of a given lerth varied as a function of word length in each language. A plot of
these data is included in Figubb based on the training stimuli (whicto reiteratewere
designed taccuratelycapture anagramproportionsas afunction of word length inthe full -
scale English and Hebrew corpora)his plot $1ows that inboth languages there are more
anagrams for shorter words than for longer worddowever the relative difference in
number of anagrams as a function of word length between English and Helaegest for
short words andvirtually disappears for very long wordS.aken together, the results
observed in Simulationaland 1b seem tandicate thatindeed the relatively large number
of anagrams in Hebrew words and the relative paucity of amasgia English words
moduate the crosdinguistic differences between TL effects in English and in Hebrew

Taken together, the second simulation successfully extends the first simulation to real
words, showing that the effects observed with artificial stimuli remain robust in the context
of the realistic linguistic environments of Hebrew and English. Furtheintbe present
results highlight an important interaction between word length, the likelihood of anagrams
due to increased orthographic density, and the magnitude of thelingpsstic differences

in TL effects.

Simulation 2: Word representations sing the Overlap Model
In Simulation 1, we have showrow the linguistic environment determines the magnitude
of the TL effectin a neural networkhat learns to map words into semantic outpit®rder
to outline howthe network differemally exploits lette position and letter identityye used a
representational scheme that explicitly separated between these two types of information.
However, the position of lettens visually presentedords is intertwined with their identity
unavoidably affecting their retinotopic representatiorand as suggested bintracellular

recordingsfrom monkey8V1, may alsocontinueto take effectin adjacent receptive fields
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further down the visual processing strea@s long as no discrimination training is applied
(Crist, Li & Gilbert, 2001; Kapaida, Ito, Gilbert, & Westheimer, 1995¥he aim of
Simulation 2 was therefore to replicate the findings of Simulation 1 usiray more
biologically plausiblerepresentation of wordi& which the information about the position

and identiy of lettersis intertwinedat the input levelTo this end we represented words
using the coding schemef the overlap model (Gomez et al., 2008),highly influential
model of orthographic coding that dlpes not separate position and ident®y includes

noise in position coding thas biologically inspired and 3) takes under consideration
physical properties of position, such that if the same letter appears in prdagatbns
within two words, thecorresponding representations will be more dateel compared to
when the two locations are distanhmongst other strengthdn this model, letter
representatioms depicted as a Gaussian activation function over several possible positions,
with peak activity i n t leducedadctivityéndhe pemlsbhoring o n

positions.

Simulation 2a: Artificial Words

As in simulation 1a, we started our investigations using simplified Aloedstimuli that
allowed us to examine our hypothesis under-wetitrolled settings.
Methods
Training PatternsNetwork Achitectureand Procedure

Words were coded using the schedescribed by Gomez and colleagudes the

overlap mode(2008). Specifically, each letter was represented Buynits that corresponded
to different locations in the woravith unit 1 corresponding to the start of the word amdt
19 to the end of it (we used 19 uritscause this was the longest number of letters in a word
in the realword vocabularyin Simulation 2band this guarantees a sufficient resolution to

distingui$ between all locations in this word. However, qualitatively similar results are

of
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obtained with higher and lower numbers of un¥8hen a letter was present in a waditese

units assumedaussian activation valsavith peak activity aroundhe unit refleting the
relativepositonof t he | etter in the word. For exampl
Gaussian activation with a peak arounch i t 4, 6ad had a peak arou
(see Figure B; see alsdrigures 1 and 7 in Gomez et al, 200&pllowing Gomez, thexact

activation valuef a certain lettefor a given word were computed as following: The 19

units representing this letter were considered to encompashkilthength of the word

regardless of itsehgth and a value representirige location of the peak was computed

based on the relative location of the letterinthewdfdr ex amp |l e,adtha t he |
wo r da, tthé location of the peak was in the middle of the rand®,Qhat is, 9.5 A
Gaussian distribution centered on the Atrueo
equal bins across thel® range.The standard deviation of the activation function was set to

the range of the Gaussian (and skeplementaryMaterial for additional simulations

showing how the width of the Gaussian noise distribution impacts perforindrese

activations were then scaled by the total area such that the total activation of all units equaled

1, corresponding to a probability functidfor smplicity, the Gaussian activation functions

of all letters had the same variantits of letters that did not appear in the word had 0

activation.
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Figure 6.a) Model architecture employed 8imulation 2 b) Examples o& word
representationllustratingt h e o v e r Icalipg sbhendeaised is the Simulation

Initial training vocabularies were selected using the same methods as for Simulation
la. In additional simulations, we investigated how competition between different positions
of the same letter affects the results by manipulating the number of anagrams per letter string

in the Hebrewlike set (2,4 or 8 anagrams).



