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Abstract 

 

 

Recent research on the effects of letter transposition in Indo-European Languages has 

shown that readers are surprisingly tolerant of these manipulations in a range of tasks. This 

evidence has motivated the development of new computational models of reading that regard 

flexibility in positional coding to be a core and universal principle of the reading process. 

Here we argue that such approach does not capture cross-linguistic differences in transposed-

letter effects, nor do they explain them. To address this issue, we investigated how a simple 

domain-general connectionist architecture performs in tasks such as letter-transposition and 

letter substitution when it had learned to process words in the context of different linguistic 

environments. The results show that in spite of the neurobiological noise involved in 

registering letter-position in all languages, flexibility and inflexibility in coding letter order 

is also shaped by the statistical orthographic properties of words in a language, such as the 

relative prevalence of anagrams. Our learning model also generated novel predictions for 

targeted empirical research, demonstrating a clear advantage of learning models for studying 

visual word recognition. 

 

Keywords: Connectionist modeling, Fundamentalist modeling, Letter-position coding, 

Letter-transposition effect, Cross-linguistic differences. 
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In the last decade a large number of studies have consistently reported that readers are 

surprisingly tolerant to letter transpositions. This aspect of visual word recognition, often 

labeled as “The Cambridge University effect” (an alleged study conducted at Cambridge 

University showing that readers do not care about the order of letters), has been the focus of 

extensive research, heated debates, and impressive modeling efforts. Overall, studies that 

experimentally examined the impact of manipulating letter-order on reading performance 

have shown a very small cost of letter-transpositions in terms of reading time, along with 

robust priming effects when primes and targets share all of their letters but in a different 

order (e.g., jugde-JUDGE; Duñabeitia, Perea, & Carreiras, 2007; Johnson, Perea, & Rayner, 

2007; Kinoshita & Norris, 2009; Perea & Carreiras, 2006a,b, 2008; Perea & Lupker, 2003, 

2004; Rayner, White, Johnson, & Liversedge, 2006; Schoonbaert & Grainger, 2004). 

Transposed-letter (TL) effects were reported in a variety of European languages such as 

English (e.g., Perea & Lupker, 2003), French (Schoonbaert & Grainger, 2004), and Spanish 

(Perea & Carreiras, 2006a,b), but also for non-European alphabetic languages such as 

Basque (Duñabeitia, Perea & Carreiras, 2007), and Japanese Katakana (Perea & Perez, 

2009).  

The apparent indifference of readers to letter order converged with experimental 

findings such as relative position priming (Humphreys et al., 1990), and subset priming 

(Peressotti & Grainger, 1999), and was consequently taken to be a hallmark of reading. Its 

implications to modeling visual word recognition resonated with mounting theoretical 

discussions regarding the alignment problem (Davis, 1999), according to which, words are 

recognized irrespective of the absolute position of their letters (e.g., CAT, TREECAT), so 

that their letter identification must be context-sensitive and (relatively) position invariant. 

Because prior computational models of orthographic processing encoded letter positions in 

rigid and absolute terms (e.g., the Interactive Activation Model, IAM, McClelland & 

Rumelhart, 1981) and models of orthographic-to-phonological correspondences made 
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similar peripheral assumptions about rigid orthographic coding (e.g., the Dual-Route 

Cascaded model, DRC, Coltheart et al., 2001; the Connectionist Dual Process Model, CDP, 

Zorzi, Houghton, & Butterworth, 1998; Plaut, McClelland, Seidenberg, & Patterson, 1996), 

they were taken to miss a critical component of orthographic processing--- fuzziness in 

coding letter-position. This limitation led the way for a new generation of models that 

focused on producing letter-coding schemes and computational solutions that were non-rigid 

(e.g., the SERIOL model, Whitney, 2001; the SOLAR model, Davis, 1999; the Spatial 

Coding model, Davis, 2010; the Bayesian Reader model, Kinoshita & Norris, 2009; the 

Overlap model, Gomez, Ratcliff, & Perea, 2008).  

The new models of reading naturally differ in their initial aims and in the scope of 

phenomena they describe. However, recent discussions regarding their descriptive adequacy 

have centered to a large extent on their relative ability to reproduce and fit the growing body 

of empirical data regarding readers’ resiliency to letter-jumbling, given different types of 

distortion in the sequence of letters. While this approach has advanced us in outlining the 

possible constraints imposed on the front-end of the reading system, it also had a critical 

disadvantage. From an empirical perspective, consistent findings have shown that TL 

priming effects are not universal but restricted to a family of languages (Frost, 2012a). For 

example, reading in Semitic languages such as Hebrew and Arabic is characterized by 

extreme letter-coding precision (Velan & Frost, 2007, 2009, 2011; Perea, Abu Mallouh, & 

Carreiras, 2010)
1
. Thus, transposing the prime’s letters in Hebrew or Arabic does not yield a 

strong facilitation of target recognition as in Indo-European languages, and sometimes even 

hinders it (Velan & Frost, 2009, 2011)
2
. Similarly, presenting sentences that contain TL 

words in rapid serial visual presentation results in strikingly poor reading performance in 

                                                 
1
 Here we emphasize that letter-coding precision in Semitic languages is characteristic of lexical and reading 

tasks. Non-lexical tasks such as the same-different tasks do show fuzzy-letter coding in Hebrew as well 

(Kinoshita, Norris, & Siegelman, 2012).   
2
 TL effects for Semitic words range from -11 ms to + 8 ms pending on prime condition. TL effects for Hebrew 

non-Semitic words yield facilitation of 20 ms, similar to that of European languages (Velan & Frost, 2009, 

2011).  
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Hebrew but not in English (Velan & Frost, 2007). Recent studies from Korean (Lee & Taft, 

2009, 2011) also indicate that letter-transposition effects are not obtained in the alphabetic 

Korean Hangul as they are in European languages. These cross-linguistic differences 

regarding the impact of letter-transpositions are critical for understanding visual word 

recognition and should be taken as important constraints while modeling it. Because most 

recent models of reading have exclusively focused on languages that show insensitivity to 

transposed letter effects, they miss the well-established cross-linguistic variability in 

positional encoding necessary in a general account.  More important, from a theoretical 

perspective, understanding the source of differences in sensitivity to letter-position is critical 

for assessing the explanatory adequacy of any model of reading (see Frost, 2012a for an 

extensive discussion).  

In the case of TL effects, the debate has centered on what it is that determines (or allows 

for the emergence of) insensitivity to letter order. For many recent modelers of visual word 

recognition the working hypothesis was that this reflects a hardwired neurobiological 

constraints in coding position of sequentially aligned visual stimuli given the inherent noise 

characteristic of the visual processing system (see Szwed et al., 2012; Grainger et al., 2012; 

Norris & Kinoshita, 2012). For example, in open-bigram models (e.g., Whitney, 2001), it is 

claimed that the brain encodes words based on the presence of all ordered combinations of 

two letters appearing in a given word (e.g., encoding the word ‘form’ as the collective 

bigrams ‘fo’, ‘or’, ‘rm’, ‘fr’, ‘om’, and ‘fm’). By this view, TL priming effects mirror the 

way in which the human brain encodes the position of letters in printed words in any 

language (e.g., Whitney, 2001; Grainger & Whitney, 2004; Dahaene et al., 2005), where 

letters are often taken as two-dimensional objects processed by the visual system (e.g., 

Grainger et al., 2012; Norris & Kinoshita, 2012). In contrast, in a recent review of TL effects 

across writing systems, Frost (2012a) has argued that the overall findings regarding letter-

position insensitivity cannot be described and explained simply by assuming a 



6 

 

predetermined characteristic of the brain’s neurocircuitry that processes orthographic 

information. Rather, it is an emergent particular consequence of the neural system’s 

interaction with the linguistic properties of European languages, reflecting an efficient 

optimization of encoding resources. By this account, in European languages printed words 

generally (albeit with some exceptions) differ by the identity of their constituent letters, so 

that different sets of letters are assigned to different words. Consequently, printed words can 

still be easily recognized even when their letters are transposed. In contrast, in Semitic 

languages, words are formed by inserting a tri-consonantal root into fixed phonological 

word-patterns (see Frost, Forster, & Deutsch, 1997, for a detailed description), and the root 

letters are the initial target of orthographic processing (e.g., Frost, Kugler, Deutsch, & 

Forster, 2005). Because many roots share a subset of three letters but in a different order, 

words often differ by the order of these letters rather than by their mere identity. This cross-

linguistic difference is reflected by the differential prevalence of anagrams in European 

versus Semitic languages: Whereas in English, French, or Spanish anagrams are mostly 

incidental exceptions, in Hebrew or Arabic anagrams are very common (Velan & Frost, 

2011).  

This account provides a very different theoretical explanation to TL effects. It shifts the 

cause of insensitivity to letter-order from a hard-wired and fixed neurobiological constraint 

of the visual/orthographic information processing system, to an emergent property of the 

interaction of the neurobiological constraints with a domain-general computational system 

that is tuned to the distributional characteristics of the linguistic environment. By this view, 

since for efficient reading, the statistical properties of letter distributions of the language 

(root vs. word-pattern letters) and their relative contribution to meaning have to be detected, 

readers of Semitic languages become sensitive to letter order. In contrast, readers of 

European languages simply do not require such sensitivity and are thus affected by the 

neurobiological noise involved in processing letters. Indeed, Velan and Frost (2011) have 
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shown that even within one language, Hebrew, TL effects can be made to appear or vanish 

given the linguistic properties of the printed words that are presented as stimuli (see footnote 

2). In that study, the authors demonstrated that when native speakers of Hebrew are 

presented with Hebrew printed words of non-Semitic origin, which resemble base words in 

European languages, the typical TL effects observed in European languages are obtained. 

The approach of some recent models of reading that essentially hardwire letter-position 

insensitivity given the general noise involved in processing visual stimuli (e.g., directly 

motivating positing open bigrams as a computational mechanism to produce relative-

position priming effects; Grainger & Whitney, 2004, p. 58) is inevitably blind to these cross-

linguistic and cross-stimuli differences, and does not explain how and why cross-linguistic 

differences are observed. 

This brings us to the potential advantage of the approach advocated by proponents of 

learning models. Learning models are developed from the outset to gradually learn a 

mapping between representations via domain-general learning mechanisms (see McClelland 

et al., 2010). Thus, in such models, a specific behavior emerges instead of being hardwired. 

This approach de-emphasizes the tailoring of the model’s architecture and processing 

mechanisms, and instead focuses on how representations and processing principles interact 

with the statistical regularities in the environment during learning (see Rueckl, 2010, for a 

detailed review). The significant advantage of learning models in the context of 

understanding visual word recognition and letter-order effects seems evident. First, the 

emphasis on generic learning mechanisms is compatible with a broad range of learning and 

processing phenomena in general, including but extending well beyond the challenge of 

learning to read. Second, languages differ on many statistical properties, such as the 

distributions of orthographic and phonological sub-linguistic units, their adjacent and non-

adjacent dependencies, the systematic correlations between graphemes and phonemes (or 

syllables), and the type of correlations between form and meaning through morphological 
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structure (Frost, 2012a). Native speakers can pick up on these characteristics implicitly 

through statistical learning procedures (e.g., Frost et al., 2013). A model of reading that is 

built using this same set of principles has, therefore, the potential to capture, explain, and 

predict empirical phenomena observed in any language, and more specifically the observed 

cross-linguistic differences in TL effects.  

Recently, Baayen (2012) has used a related approach to examine how the linguistic 

environment shapes sensitivity to letter order. Using Naïve Discriminative Learning (NDL, 

Baayen et al., 2011), Baayen compared the sensitivity to letter order in English versus 

biblical Hebrew, for cases in which words from the two languages were aligned with their 

meanings. Baayen (2012) demonstrated that pairs of contiguous letters (correlated with order 

information in the model) had a much greater functional load than single letters in Hebrew 

relative to English, thereby showing that greater sensitivity to letter order emerges in Semitic 

languages, when nothing but abstract discriminant learning principles are considered. 

Although Baayen’s modeling approach does not make explicit claims about bigrams as 

representational units, this choice of input representations does include some explicit relative 

position information, rather than allowing this property to be learned. More importantly, 

given the concatenated morphology of English, and because transpositions typically involve 

middle letters rather than initial or final ones, bigram representations naturally preserve 

morphological information for English (e.g., the plural suffix), more than for Hebrew. This 

could be a contributing factor to the higher loads of bigrams to meaning in English relative 

to Hebrew. A critical question, therefore, is whether language-specific letter-transposition 

effects would emerge during learning in a neural network, and if so, how and why?  

From this perspective, learning models are akin to any empirical investigation. 

Considering TL effects, the modeler manipulates the statistical properties of the input 

scheme, aiming to examine whether sensitivity or insensitivity to letter-order emerges given 

implemented changes in the linguistic environment. The present paper offers such an 
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investigation. Our aim was to produce a simple and readily-generalizable neural network 

model that demonstrates how differences in the statistical properties of the language 

naturally lead to differences in TL effects as a result of simple error-driven learning. In the 

following, we describe a multi-layer neural network that maps orthographic inputs to 

semantic outputs. The use of a relatively generic architecture here was intentional to 

emphasize that the results we obtained do not depend on a highly-tailored set of learning, 

representation, and processing principles, that have been developed for capturing a specific 

and narrow set of data. In so doing, we have implemented a fundamentalist model of 

reading-skills acquisition that intentionally eliminates irrelevant complexity and focuses only 

on the effects of letter identity and letter position (see Kello & Plaut, 2003; McClelland, 

2009 for a discussion of this approach). This model was trained on Hebrew orthography or 

English orthography and its “behavior” was then tested in response to new pseudo-words 

that diverged from the original ones by means of letter transpositions or letter substitutions. 

Two different versions of these simulations were run. In Simulation 1, input words were 

represented using a coding scheme that orthogonalized the identity and position information. 

Accordingly, we treated each letter and its position as independent features of a word, and 

simulated noise in the positional units by making the positional information less readily 

available than the identity information. This representation scheme allowed us to directly 

investigate some of the characteristics of the network’s solutions – in particular, its different 

treatment of position and identity information - when learning the orthography-to-semantic 

mapping. In Simulation 2, we replicated these findings using the well-known, biologically-

driven coding scheme of the overlap model (Gomez et al., 2008) to demonstrate that the 

outcome of the simulations is not input-code dependent but, rather, reflects general learning 

principles. Each of these two simulations was further divided to two different examinations: 

the first used highly simplified words that allowed us to examine the model’s behavior under 

tightly controlled settings, whereas in the second, the same network was tested on real 
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Hebrew and English words, thus allowing the examination of the model in realistic settings 

that mimic the true linguistic environments of English and Hebrew.  

 

Simulation 1: Word representations with independent  

identity and position information 

 

Simulation 1a: Artificial words 

To evaluate whether differences in word structure in Semitic versus European languages 

shape sensitivity to letter order, we began our examinations with a set of artificially created 

words. These words were intentionally simplified to allow us to focus on the main linguistic 

difference between Hebrew and English which we presume lies at the heart of letter order 

sensitivity: The statistical properties of letter distributions that differentiate between words. 

Two sets of words were therefore created: an “English-like” set and a “Hebrew-like” set. In 

the English-like set, there were no anagrams, and each “word” was comprised of its own 

unique random combination of letters. In the Hebrew-like set, a given combination of letters 

occurred in two orders in two different words, resulting in a substantial number of anagrams. 

Taken together, these simulations were aimed at investigating the differential influence of 

identity and position information that emerges when the same network architecture learns to 

map orthography to semantics in the two different languages.   

 

Methods 

Network architecture 

In this simulation, the network architecture maps separate position and identity 

orthographic input representations onto semantic output representations. The specific 

architecture of this network was inspired by the well-known architecture of Rumelhart and 

Todd (1993; see also McClelland & Rogers, 2003). In particular, the architecture allowed for 
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the pre-processing of input representations of the identity and position of a word’s letters in 

two separate 200-unit hidden layers before this information was combined in a second 200-

unit hidden layer, which ultimately feeds into a 200-unit semantic output layer (see Figure 

1a). This architecture, as in the original Rumelhart and Todd model, allows for the separate 

examination of the hidden representations that emerge in the first hidden layers (‘Identity 

representation layer’ and ‘Position representation layer’ in Figure 1a) prior to their 

intermixing in the ‘Integration layer’. Note that our choice of architecture, which separates 

identity and position coding, is not an explicit claim regarding a separate encoding of these 

two sources of information (see Simulation 2 for results using a more biologically plausible 

architecture without such an explicit separation). Rather, this separation was intended to 

provide clearer insight into the relative contribution and effects of the two sources of 

information, letter-identity and letter-position, under the constraints imposed by the structure 

of the two different languages.   

In this simulation and in all subsequent simulations, the net input of each unit in a layer 

in the network was the sum of the activity of the units connected to it in the previous layer, 

as well as that of a bias connection, multiplied by the connection weights between these 

units.  A unit’s output was a sigmoidal function of its net input. 

 

Training Patterns. 

Orthographic and semantic representations were generated for 1000 five-letter 

“words” for each of the two languages. Five-letter words were chosen here because they 

correspond, approximately, to a typical word length across experiments studying TL effects 

in both languages (e.g., Velan & Frost, 2009; Perea & Lupker, 2004). In the English-like set, 

each word was comprised of 5 different letters chosen randomly with equal probability. 

Critically, no two words in this set of 1000 contained exactly the same set of letters—that is, 

there were no anagrams.  In the Hebrew-like set, an initial set of 500 words was created per 
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the same generation procedure as for English, but the remaining 500 words were created by 

shuffling the letter order of each of the initial 500 words to generate an anagram. Note that 

this choice of input was deliberately designed to highlight the main difference of interest 

between the languages; it therefore drastically simplified all other characteristics of real 

English and Hebrew words, such as different word lengths, specific statistical regularities of 

vowels and consonants, or the existence of letter repetitions (all these are included in 

Simulation 1b which is trained on real words).  
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Figure 1: A) Model architecture employed in Simulation 1 using artificial words.  B) 

Examples of two representations illustrating how letter-position information was coded.   
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For each word in the training vocabulary, the visible (i.e., input and output) 

representations were generated as follows: The identity input representation contained 26 

units, one for each letter in the alphabet (including for the Hebrew-like stimuli. The true 

number of Hebrew letters – 22 – is captured in later. See the Supplementary Materials for 

discussion of simulations showing orthographic density is not driving the effects). The 

representation of a word’s letters in the identity layer consisted of clamping the activation of 

each letter that was present in a word to 1 and clamping all of the other units to 0. For 

example, in the word ‘table’, the units representing the letters t, a, b, l, and e would assume 

the value 1, while the rest of the units would be silent. 

Coding of letter-position was designed such that it prevents the input from artificially 

biasing the network into finding orthographic-to-semantic mappings that make use of 

identity-position dependencies. As such, any dependencies found by the network by the end 

of training would necessarily result from the need to accomplish the mapping task rather 

than due to an initial bias in the input. To accomplish this, we have used a coding scheme 

that completely orthogonalizes the position information from the identity information (in 

contrast to several previous methods of orthographic coding, such as bigrams or trigrams.). 

The position input representation contained 25 units, and its coding was based on the 

alphabetical order (A, B, C, D, E…). To generate a word’s position representation, the five 

letters in each word were first arranged according to their order in the alphabet.  Each letter 

was then assigned a rank based on its position in the word.  For instance, in the word 'table', 

a is the earliest alphabetical letter within the existing letters and is positioned at location 2, b 

is the second and positioned at location 3, and so on (See Figure 1b for examples). 

Therefore, the letter order for the word 'table' is coded as 2-3-5-4-1. Conversely, in the word 

'bleat', containing the same letters, the order is coded as 4-1-3-2-5. This code was then 

translated to a binary representation of letter position in five five-unit “slots”, each of which 

coded for the position of one of the letters in the word.  The coding of a specific position was 
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accomplished by clamping on the unit whose position in the five-unit slot corresponded to 

the desired analog position, while clamping all other units off.  For example, '5' was coded as 

00001 in the five-unit slot, '4' was coded as 00010, and so on. This coding system separates 

the letter identity information and the letter position information in a non-redundant way.
3
 

 The input representation of each word was associated with a 200-unit semantic 

output representation that reflects the arbitrary nature of orthographic-to-semantic coding. 

The semantic representations consisted of sparse representations organized per a categorical 

structure (see Plaut, 1997).  Specifically, an initial set of 40 category prototypes were 

created, each with 15% of the semantic units turned on.  Each of these prototype 

representations were then distorted by regenerating each semantic feature with a probability 

of 0.15 using the same initial 15% sparsity, under the constraints that each semantic pattern 

needed to be different from every other semantic pattern by at least three features, and that 

every pattern needed to have exactly 15% of its units turned on (this reduces irrelevant 

variability across exemplars). The same set of semantic representations was used for both the 

Hebrew and English items.   

 

Noisy Positional Encoding 

The input patterns, as described so far, are structured such that identity and position 

information are equally accessible to the network. Independent neurobiological evidence 

indicates, however, that position information is fuzzier than identity information for any 

language, due to inherent characteristics of the visual system (e.g., Martelli, Burani, & 

Zoccolotti, 2012; Perea & Carreiras, 2012; see Gomez et al., 2008, for discussion). Thus, the 

                                                 
3
 This coding system could be seen as partially implementing a static version of the temporal coding scheme by 

Davis (2010), which, too, maintains the orthogonality between identity and position. It thus avoids context-

dependent representation of serial order such as in slot-coding or coding based on bigrams (see, for example, 

Dehaene, Cohen, Sigman, & Vinckier, 2005). However, it could potentially lead to some spurious correlations 

between otherwise orthographically-unrelated words (e.g., the word 'whisk' and the word 'table' have the same 

order code, 2-3-5-4-1). Nonetheless, because the magnitude of this correlation does not systematically differ 

between the languages, this does not affect any of the findings reported here.  
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contribution of identity information should outweigh, to some extent, that of position 

information, for all languages, because of simple reliability considerations. Therefore, in all 

of the following simulations we ensured that the letter-position information would be less 

reliable than letter-identity information. In simulation 1, this was achieved by directly 

scaling down the contribution of the position representation by 80% relative to the identity 

representation (i.e., instead of a binary 0/1 input, the position layer now contained a binary 

0/0.2 input). The choice of the specific scaling value was arbitrary as our goal here was 

simply to investigate the qualitative impact of reducing the contribution of positional 

information in the two languages. Such scaling down partially corresponds to the 'letter 

position uncertainty' previously suggested by other studies (e.g., Davis, 2010; Gomez et al., 

2008) because in biologically-realistic settings containing noisy conditions, a lower degree 

of signal inherently becomes more susceptible to coding error.
4
 It can also be thought of as 

representing a lower degree of attention given to the position of letters in a word compared 

to their identity (see Servan-Schreiber, Printz, & Cohen, 1990, for a related proposal. For 

additional control simulations with other noise implementations and without noise 

altogether, see Supplementary Materials). 

From the computational perspective, we hypothesized that because English can 

essentially rely on identity information alone to activate a correct semantic representation, 

the network will primarily learn to rely on this stronger source of information when mapping 

from orthography to semantics. This is because the activation of units in the network, and by 

proxy, the magnitude of the weight-adjustments during error-driven learning, are made in 

                                                 
4
 Within the context of a connectionist network, if noisy position coding is assumed to be a fixed characteristic 

of the visual/orthographic input, this would essentially lead to competition between the units coding for the 

correct slot (the signal) and the adjacent units (the noise). Assuming that the noise is normally distributed 

across adjacent positions, with a sufficient number of learning trials the network could converge on the mean 

difference between the signal and the noise, per the central limit theorem.  Thus, instead of simulating the noise 

directly, it is possible, instead, to focus on a core consequence of the noise by simulating the mean difference in 

network activity between the signal and the noise in the network.  Assuming that the default network represents 

a no-noise network, increasing noise should lead to smaller differences between the signal and the noise, and 

hence reduced activation in the input representations for letter-order. A more direct but more computationally 

expensive implementation of noise is presented in Simulation 2.  
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proportion to the input that they receive from other units (see Rumelhart et al., 1986). If the 

contribution of positional information is scaled down, the network will primarily activate a 

semantic representation based on letter identity, and will make weight adjustments that 

primarily improve the mapping of the identity input onto the semantic output. Effectively, 

this will cause the network to rely more on identity information, making it less sensitive to 

transpositions. In contrast, we hypothesized that in Hebrew, the network would learn to rely 

more strongly on positional information despite the initial scaling down of the activation of 

the positional input representation (reflecting neurobiological noise). This is because error-

driven learning will fundamentally not be able to learn to correctly activate a semantic 

representation for Hebrew words without the information from the position input, due to the 

fact that many words are anagrams. Consequently, the only way by which error will be 

reduced for the pairs of words that form an anagram is by adjusting the weights in the 

network to place a greater reliance on positional information in activating semantics. Thus, 

we expected that over the course of training in Hebrew, the network would learn to 

overcome, to some degree, the reduced contribution of positional information (i.e., it would 

functionally reduce the neurobiological noise in its internal representations).  Such a finding 

would be in line with the general claim that Hebrew readers implicitly learn to encode 

relatively precise letter-position given the statistical structure of their linguistic environment 

(Frost, 2012a, Velan et al., 2013).  

 

Procedure 

Training. All weights in the network were initialized to small random values drawn 

from a uniform distribution of range [-0.01 0.01]. The mean of the distribution for the bias 

connections was set to -1.73 so that the mean semantic activation at the onset of training was 

0.15, corresponding to that in the target semantic representations (Armstrong & Plaut, 2008).   
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The training method followed standard procedures used in prior modeling investigations 

(e.g., Plaut, 1997; Plaut & Gonnerman, 2000).  The network was trained by presenting each 

input and allowing activation to feed forward to activate a semantic output.  This semantic 

output was then compared to the target output for that word and error was calculated using 

cross entropy (Hinton, 1989). Error was accumulated across all of the words in the training 

corpus and weights were adjusted based on the accumulated error after a full sweep through 

the corpus. Weights adjustment was based on the delta-bar-delta variation of the back-

propagation algorithm (Jacobs, 1988; Rumelhart, Hinton, & Williams, 1986), using a global 

learning rate of 0.0001, momentum of 0.9 and decay of 0.00001. The local learning rate for 

each weight was initialized to 1.0 and adjusted over training with an additive increment of 

0.1 and multiplication decrement of 0.9 (see Plaut, 1997).  The network was trained until a 

homeostatic stopping criterion was reached, wherein the effects of weight decay were 

effectively cancelling out the effects of error-driven learning (Armstrong, 2012). Per this 

criterion, training stopped once two criteria were met:  First, each word’s orthographic inputs 

activated a semantic representation for which each semantic unit was within 0.5 of its target 

value. Thus, the semantic representation produced by the network was always most similar 

to the correct semantic output for each word than it was to the semantic representation of the 

other words in the training corpus.  Second, the slope of the error function was required to be 

near-zero (when the average error reduction across two successive batches of 100 sweeps 

through the training corpus was less than 5%). Approximately 9,000 sweeps through the 

training corpus were required to reach homeostasis in English, and 9,800 sweeps in Hebrew. 

Testing. Testing involved freezing the network’s weights and examining the trained 

network's output when exposed to two main kinds of novel inputs: nonwords created from 

the training words either via letter-transposition or letter-substitution(s). In the letter-

transposition case, two of the internal letters (letters 2, 3, or 4) in a randomly chosen word 
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from the training set switched locations
5
. In the letter-substitution case, one or two of the 

internal letters in a word were replaced with different letters (see Velan & Frost, 2009). The 

letter substitutions were constrained to not involve repeating any letter from the original 

word. All of the test stimuli that were created were unique and not part of the training set. A 

total of 1000 inputs were randomly constructed as described above for each of the three 

testing sets (transposition, 1-letter substitution, 2-letter substitution).  

After presenting each testing item to the network, we calculated the correlation between 

the semantic output activated by this testing item and the one activated by the base item in 

the training set from which the testing item was derived (e.g., the correlation between the 

outputs to 'table' and 'talbe'). This correlation was taken to reflect the degree of facilitation 

that the modified word would induce on the original word (see Perea & Lupker, 2003, for 

the effect of letter-transpositions on semantic activation, and Seidenberg & McClelland 1989 

for the parallel between reaction times and similarity measures).
6
  TL priming effects were 

calculated as the difference between the mean correlations of the letter-transposition 

condition and the mean correlations of the 1-letter substitution condition that served as 

baseline (using the 2-letters substitution condition as baseline does not significantly change 

any of our results). 

The whole procedure was carried out twice to assure robustness of the results to any 

differences stemming from randomization of word stimuli or initial weights (similar to Plaut, 

2002). All reported results are averaged over these two runs of the simulation. 

Results 

Mean correlations between the semantic representations activated by the English or 

Hebrew words and those activated by the same words with either letter-transpositions, 1-

                                                 
5
 In here and in the rest of the simulations, transpositions could include both adjacent and non-adjacent letters. 

The only exception is Simulation 2b where we examined interactions between word length, TL priming and 

language using the overlap model coding scheme. Since that investigation was sensitive to the distance between 

letters, only adjacent letters were used to dismiss irrelevant biases due to word-length.  
6
 Other measures of similarity between vectors besides correlation, such as Euclidean distance and cross-

entropy, were applied in additional simulations (not presented) and yielded similar results.  
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letter substitutions, or 2-letters substitutions are presented in Table 1 (‘Artificial words’). As 

hypothesized, dramatic cross-linguistic differences emerged in the letter transposition 

condition, with the English-like inputs being less sensitive to the transposition manipulation 

compared to the Hebrew-like inputs. In contrast, there was almost no difference between the 

languages in either of the substitution conditions.
7
 The TL priming effects, calculated as the 

difference in the mean correlation between the letter-transposition condition and the letter-

substitution condition with a single substitution (e.g., Velan & Frost, 2011) are plotted in 

Figure 2, showing much stronger priming in English compared to Hebrew. It is especially 

notable that TL primes in the English-like set are producing semantic outputs that are 

extremely similar to those produced by the original word stems (r > 0.99), indicating that the 

network has learned to be virtually insensitive to such transpositions. This result fits well 

with masked priming experiments demonstrating similar priming effects for identity versus 

TL priming (e.g., Forster et al., 1987), as well as the ease by which subjects are able to read 

full English paragraphs made up almost exclusively of transposed-letter words (the 

“Cambridge University effect”; see Velan & Frost, 2007, for related results using a RSVP 

paradigm). 

 

Representational differences between identity and position.   

To further understand why the default and noisy conditions produced differential TL 

effects across English and Hebrew, we conducted additional investigations that contrasted 

other network properties. In particular, we focused on how well the network was able to 

distinguish between the different words in the two linguistic environments based on its 

internal representations of word identity and position, as coded in the identity and position 

hidden layers. 

                                                 
7
  In all simulations reported, the effect sizes were considerably larger (typically more than one order of 

magnitude) than the standard errors, obviating the need for detailed statistical analysis.  
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  Letter 

transposition 

1-Letter 

substitution 

2-Letter 

substitution 

TL priming 

effect 

 

Simulation 

1a: 

Artificial 

words 

English-like 0.99 0.16 0.06 0.83 

Hebrew-like 0.59 0.16 0.07 0.43 

 

Simulation 

1b: 

Real words 

English words 0.87 0.13 0.05 0.74 

Hebrew words 0.53 0.09 0.03 0.44 

 

Table 1: Correlations between primes and targets, and the TL priming effect, for English-

like and Hebrew-like stimuli in Simulation 1a (artificial words) and Simulation 1b (real 

words). 

 

 

 

Figure 2. TL priming effects in the model trained on artificial words (Simulation 1a). 

Priming effects were calculated as differences in average correlation coefficients between 

the transposed and 1-letter substitution conditions. The error bars in this figure and all 

subsequent figures represent the standard error of the mean, averaged across the two runs 

of the simulation.    

 

To probe the network’s ability to differentiate between words based on either identity or 

position information, we measured how far apart the internal representations of identity – 
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and, separately, of position – were from each other. This was accomplished by calculating 

the mean Euclidian distance between the hidden representations of identity and position 

across all pairwise comparisons of the words in the training corpus. The larger the distance, 

the more distinct each representation is, and thus the better it serves as a source of “input” 

for the subsequent layers to use in activating a particular semantic output. First, as a 

baseline, we calculated the mean pairwise distances in the position and identity 

representation layers before training, and established that these distance scores were near-

zero in all cases (a logical outcome, given that the strong negative bias led to only small 

mean levels of activation for all words in the hidden layers, and prior to training, the 

differences between hidden representations are due strictly to the random initial weights). 

We then repeated these computations at the end of training to see its impact.  The results are 

plotted in Figure 3. 

 

Figure 3.  Mean pairwise Euclidean distances between the representations formed for 

identity and position. The error bars represent the standard error of the mean across the two 

runs of the simulation.   
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As can be seen in the figure, both English and Hebrew show similarly separate internal 

representations of identity. In contrast, there were major differences in the mean distances 

between the position representations for English versus Hebrew. This is attributable to the 

fact that different position representations must be generated for at least the anagrams, so the 

network must develop distinct (and reasonably distant) internal position representations in 

Hebrew. In contrast, in English, the position representation is not necessary to complete the 

mapping because each word has a unique identity input representation. Consequently, rather 

than a necessity, position information is no more than just a helpful but optional input for 

facilitating the mapping. Because the reduced position input leads to a reduced error signal 

being back-propagated to the position input representation, learning to use position 

information is much slower (i.e., harder) than simply solving the input-output mapping via 

the identity pathway (where learning is fast due to the large input activations and 

correspondingly large back-propagated errors). Therefore, the network favors the identity 

pathway and does not learn to differentiate well between the position representations. To 

sum up, the results show that when position information of English words is fuzzy (i.e., 

reduced), it is not represented well in the network; in contrast, position information of 

Hebrew stimuli is always represented reasonably well (see Supplementary Materials for 

more details).  

 

Discussion 

Whereas English- and Hebrew-like inputs were effectively identical in the magnitude of 

the priming that they generated in letter-substitution conditions, the TL condition produced 

substantially greater priming in English than in Hebrew. This is consistent with our 

hypothesis that simple variations between the statistical properties of English and Hebrew 

words, as extracted by a simple learning model, are sufficient to produce qualitatively 

similar effects to the ones observed in behavioral TL priming experiments (e.g., Velan & 
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Frost, 2011; Perea & Lupker, 2003). Thus, our results support the notion that increased 

position sensitivity emerges during learning when the linguistic environment requires it.  

Simulation 1a was focused on simple artificial vocabularies that qualitatively capture the 

fact that in English, there are virtually no anagrams, whereas in Hebrew, anagrams are 

highly frequent. However, while enabling us to examine the premises of our approach by 

focusing on the key network properties that underlie TL effect, this simulation used 

relatively small vocabularies made of highly controlled sets of artificial words that do not 

fully reflect the richness and complexity of English and Hebrew. In the next simulation we 

turn to a more stringent test of our theoretical claims by using inputs with greater ecological 

validity.  

 

Simulation 1b: Real words 

In Simulation 1b, we extended our model to investigate TL effects obtained for real 

Hebrew and English words in linguistic environments that mimic those of English and 

Hebrew. Thus, the words chosen for the simulation were sampled to reflect the actual 

statistical properties of English and Hebrew on a number of metrics (e.g., word length, 

frequency), but most importantly in terms of the real distribution of anagrams as a function 

of word length in the two languages.  In so doing, this simulation allowed us to investigate 

two important additional issues. First, it allowed us to evaluate whether the effects observed 

in Simulation 1a are not due to some artifact related to the simple and relatively small 

vocabulary used; thus, Simulation 1b generalized our findings to the real statistical 

properties of Hebrew and English.  Second, the simulation enabled more direct comparisons 

between our findings and empirical TL effects by allowing us to compare the stimuli used to 

produce TL effects in English and in Hebrew on factors such as word length and word 

frequencies that could bias the empirical (and computational) results.   
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Methods 

Training patterns 

English and Hebrew words used in the simulation. We selected two large corpora from 

which to draw the English and Hebrew stimuli. The English words were taken from the 

SUBTL word frequency database (Brysbaert & New, 2009). The Hebrew words were taken 

from the Plaut and Frost database (http://word-freq.mscc.huji.ac.il/index.html).  Effectively, 

these corpora sample the full span of words that are used in both of the languages, including 

words in singular and plural form, inflected words with prefixes and suffixes, and so on. To 

avoid introducing very low-frequency words that are not known by many native speakers of 

English and Hebrew, we then filtered these corpora so that they only contained words with 

frequencies greater than or equal to one per million. This left 17,530 English words and 

61,383 Hebrew words as our base lists from which we drew the samples to train the models.
8
 

The number of anagrams in these base lists was computed separately for each word length, 

in number of letters, in each of the languages. Additional details regarding the distribution of 

anagrams as a function of word length are discussed later and presented in Figure 5b.   

Training vocabularies for Hebrew and English consisted of 3000 words each that were 

randomly sampled from the base lists, ensuring that the sample sets had the same proportion 

of anagrams as the base lists. This was accomplished by sampling the corresponding 

proportion of occurrence of anagram pairs (e.g., ‘act’, ‘cat’), anagram triplets (e.g., ‘are’, 

‘ear’, ‘era’) and so on, as well as the occurrence of words without anagrams at all, separately 

for each word length (with total number of words of a given length proportional to its 

prevalence in the base list). The likelihood of sampling a specific word without any 

anagrams was proportional to the frequency of the word; similarly, in the case of anagrams, 

the likelihood of sampling a specific set of anagrams was proportional to the multiplication 

                                                 
8
 The abundance of clitics in Hebrew is directly responsible for why the Hebrew set contained many more 

items than the English set. For example, many prepositions, pronouns, possession adjectives and conjunction 

words are spelled in Hebrew as letters that are added to the base word, thus considerably increasing the total 

number of words. 

http://word-freq.mscc.huji.ac.il/index.html
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of the frequencies of all of the anagram words in this set (e.g., the frequencies of ‘cat’ 

multiplied by the frequency of ‘act’ were evaluated compared to multiplications of the 

frequencies of other anagram pairs, such as ‘dog’ and ‘god’, etc.).
9
  Note that the final 

samples had a mean word frequency of 250.31 per million in English and 92.16 per million 

in Hebrew.  This difference stemmed from the fact that individual Hebrew words are less 

frequent than English words because of their morphological complexity (e.g., there are 

separate words that mean “he sat” and “she sat” in Hebrew, whereas in English this meaning 

would be communicated via two words and the word “sat” would have its frequency 

incremented when both “he sat” and “she sat” are encountered).  However, because both 

networks were trained to the same homeostatic criterion (i.e., all words had to be well known 

and the mean error in the network was stable) this mean difference is superficial and 

irrelevant to the analyses of the trained network (see Supplementary materials for additional 

analysis of the effect of word frequency in our model). 

Network architecture and representations. The network architecture was, in abstract, 

identical to that employed in Simulation 1a, although some minor changes were necessary to 

accommodate the representations of real words, which were more numerous and varied on a 

number of properties (e.g., word length). These changes were as follows: First, to 

accommodate the larger training corpus, all the hidden layer sizes were increased to 500 

units. Second, the letter-identity input layer was slightly modified to allow it to accurately 

reflect the actual letter-identity properties in English and in Hebrew (26 letters in English, 22 

letters In Hebrew).  Additionally, to allow for the representation of repeated letters, the unit 

activations in this layer could be set to integer values (i.e., 0/1/2/3/etc. instead of only 0/1) 

that reflected the number of times a letter occurred in a word. For example, in ‘nanny’, the 

units representing ‘a’ and ‘y’ would have their activations set to 1, as before, whereas the 

                                                 
9
 An alternative for multiplication of frequencies is to use average of frequencies. We hypothesized that 

multiplication is more justified here since it reflects the probability of choosing ALL of the anagrams of a 

certain letter string. In practice, however, there was almost no difference in the distributional characteristics of 

the selected set when using either of these methods.   
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unit representing ‘n’ would have its activation set to 3.  Note that this change also allowed 

the identity input to have a different identity representation for words like ‘end’ and ‘need’, 

which otherwise contained the same letters but for which the number of occurrences of each 

letter are different. Similarly, the letter-position input layer was modified to allow for the 

representation of repeated characters and varied word-length.  This was accomplished as 

follows: Instead of having 25 units as in the previous simulations (i.e., 5 slots * 5 units), the 

letter-position input consisted of 256 units (16 slots *16 units, per the maximum word length 

in English; in Hebrew, the longest word contained 14 letters so the last two slots were never 

used). Multiple appearances of a letter were coded by setting all units corresponding to the 

positions of this letter in the designated slot as active, and the rest silent. For example, the 

letter n in the word ‘nanny’ was coded with the 16-unit slot 1011000000000000 

(corresponding to n appearing in the 1
st
, 3

rd
, and 4

th
 positions). In unused slots for words with 

fewer than 16 letters, all unit activations were set to 0. Finally, as in Simulation 1a, position 

information was scaled down from 0/1 to 0/0.2. 

The target semantic outputs for the words were generated using the same method 

described for Simulation 1a; only the number of category prototypes was increased from 40 

to 120, proportional to the increased size of the training set 

 

Procedure 

Training. The training and testing procedures were identical to those described in 

Simulation 1a, with the exception that during training, the error for each word was scaled 

proportionally to log10(word frequency + 1) (see Seidenberg & McClelland, 1989, Plaut et 

al., 1996, for related approaches).  The English network reached the training criterion after 

approximately 23,000 epochs and the Hebrew network reached the training criterion after 

approximately 25,000 epochs.   
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Testing. Test stimuli for both the letter-transposition and letter-substitution conditions 

were created by modifying internal letters within a word and only for words with four letters 

or more (words with three or fewer letters do not contain enough letters to generate internal-

letter transpositions). Facilitation effects were computed as in Simulation 1a.  Also similarly 

to Simulation 1a, the whole procedure – including the creation of the training and testing 

samples and initialization of the weights – was repeated twice and the reported results reflect 

average over the two runs. 

Results and Discussion 

Facilitation effects for letter transposition and substitutions are presented in Table 1 

(‘Real words’). The results indicate that the same qualitative effects observed in Simulation 

1a with artificial words were reproduced when the network was trained on real words. The 

same was also true for the magnitude of TL priming effects and the Euclidian distances 

between the identity representations and position representations (see Figure 4). 

 

Figure 4: Transposed-letter priming and pairwise Euclidean distances between 

representations for the real English and Hebrew words used in Simulation 1b. 
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 We next examined the priming effect separately for words of different lengths. There 

were two main reasons for performing this analysis: First, the Hebrew stimuli list was mostly 

comprised of words with four to eight letters whereas in English, words with nine letters or 

more were also relatively abundant. Consequently, we wanted to make sure that this 

difference was not responsible for the different TL priming effects observed across 

languages.  Second, it is known that TL priming is stronger for long words compared to 

short ones (and, in fact, is typically only studied in words with five or more letters; see 

Forster et al., 1987; Schoonbaert & Grainger, 2004). We therefore examined whether this 

interaction between TL effects and word length was present in our simulated data.  To 

investigate this issue, we computed the TL priming effects separately for words with 

different numbers of letters. The results are plotted in Figure 5a. As can be seen, the 

difference in priming between Hebrew and English was not due to word length since the 

same qualitative difference is apparent for each word length condition in isolation. In 

addition, the figure shows that TL priming indeed increased for longer words, consistent 

with other results in the literature (Schoonbaert & Grainger, 2004). Moreover, the magnitude 

of the TL priming effect interacted with word length and language: For shorter words, the 

TL priming effect was moderately large in English but very small in Hebrew, whereas both 

languages show relatively stronger TL priming effects for very long words (although, 

importantly, the effects always remained smaller in Hebrew relative to English). To our 

knowledge, this 3-way interaction represents a novel finding that emerges from the 

simulations reported here, which has not been yet addressed in empirical cross-linguistic 

studies.   

The simulation also allowed us to examine to what extent the cross-linguistic 

differences between Hebrew and English in TL priming could be due, to some extent, to a 

word-length confound across studies. Examining the common word lengths used in 

empirical studies in the past, we found that, indeed, some differences are evident: studies of 



30 

 

TL effects in English have generally used words with lengths ranging from 5 to 10 letters 

(Davis & Bowers, 2006; Forster et al., 1987; Lupker & Davis, 2009; Perea & Lupker, 2003; 

Schoonbaert & Grainger, 2004), whereas analogous studies in Hebrew have mostly used 

somewhat shorter words with lengths of 5-6 letters (e.g., Velan & Frost, 2011). We therefore 

examined how these differences in average word length in empirical studies of English and 

Hebrew TL effects may have impacted the magnitude of the TL effect differences between 

languages in our simulations.  To do so, we computed length-restricted TL priming effects 

for English words that contained 5-10 letters, and Hebrew words that contained 5-6 letters. 

These length-restricted TL priming effects showed a slightly stronger cross-linguistic 

difference than those reported earlier: there was a 0.75 TL priming effect in English but only 

a 0.41 TL priming effect in Hebrew. Our simulations, therefore, suggest that the variations in 

typical word-lengths across studies in the two languages do contribute to the differences in 

TL priming effects, but are not the main cause of cross-linguistic differences in TL priming. 
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Figure 5: a) Transposed-Letter Priming of English and Hebrew words as a function of 

word-length. b) Proportion of anagrams relative to all words of a given length for English 

and Hebrew.   

 

To understand the cause of this interaction between TL priming effects, word length, 

and language, we conducted additional analyses of the statistical properties of English and 

Hebrew stimuli, motivated by the results of Simulations 1a. Recall that in those simulations, 

word length was fixed and so the only way in which the stimuli could differ was in terms of 

the different orthographic input structure that we introduced by creating an anagram for 

every Hebrew word and not allowing any anagrams for English words. We therefore 

hypothesized that the three-way interaction between TL priming effects, word length, and 

language in Simulation 1b could be due to a large difference in number of anagrams between 

English and Hebrew for short words and a much smaller difference for longer words. To 
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probe this issue, we examined how the proportion of anagrams out of the total number of 

words of a given length varied as a function of word length in each language.  A plot of 

these data is included in Figure 5b based on the training stimuli (which, to reiterate, were 

designed to accurately capture anagram proportions as a function of word length in the full-

scale English and Hebrew corpora).  This plot shows that in both languages there are more 

anagrams for shorter words than for longer words.  However, the relative difference in 

number of anagrams as a function of word length between English and Hebrew is largest for 

short words and virtually disappears for very long words. Taken together, the results 

observed in Simulation 1a and 1b seem to indicate that, indeed, the relatively large number 

of anagrams in Hebrew words and the relative paucity of anagrams in English words 

modulate the cross-linguistic differences between TL effects in English and in Hebrew.     

Taken together, the second simulation successfully extends the first simulation to real 

words, showing that the effects observed with artificial stimuli remain robust in the context 

of the realistic linguistic environments of Hebrew and English. Furthermore, the present 

results highlight an important interaction between word length, the likelihood of anagrams 

due to increased orthographic density, and the magnitude of the cross-linguistic differences 

in TL effects.  

 

Simulation 2: Word representations using the Overlap Model 

In Simulation 1, we have shown how the linguistic environment determines the magnitude 

of the TL effect in a neural network that learns to map words into semantic outputs. In order 

to outline how the network differentially exploits letter position and letter identity, we used a 

representational scheme that explicitly separated between these two types of information. 

However, the position of letters in visually presented words is intertwined with their identity, 

unavoidably affecting their retinotopic representation and, as suggested by intracellular 

recordings from monkeys’ V1, may also continue to take effect in adjacent receptive fields 
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further down the visual processing stream as long as no discrimination training is applied 

(Crist, Li & Gilbert, 2001; Kapaida, Ito, Gilbert, & Westheimer, 1995).  The aim of 

Simulation 2 was therefore to replicate the findings of Simulation 1 using a more 

biologically plausible representation of words in which the information about the position 

and identity of letters is intertwined at the input level. To this end, we represented words 

using the coding scheme of the overlap model (Gomez et al., 2008), a highly influential 

model of orthographic coding that 1) does not separate position and identity; 2) includes 

noise in position coding that is biologically inspired; and 3) takes under consideration 

physical properties of position, such that if the same letter appears in proximal locations 

within two words, the corresponding representations will be more correlated compared to 

when the two locations are distant, amongst other strengths. In this model, letter 

representation is depicted as a Gaussian activation function over several possible positions, 

with peak activity in the ‘true’ position of the letter and reduced activity in the neighboring 

positions.  

 

Simulation 2a: Artificial Words 

As in simulation 1a, we started our investigations using simplified word-like stimuli that 

allowed us to examine our hypothesis under well-controlled settings.  

Methods 

Training Patterns, Network Architecture and Procedure 

 Words were coded using the scheme described by Gomez and colleagues for the 

overlap model (2008). Specifically, each letter was represented by 19 units that corresponded 

to different locations in the word, with unit 1 corresponding to the start of the word and unit 

19 to the end of it (we used 19 units because this was the longest number of letters in a word 

in the real-word vocabulary in Simulation 2b and this guarantees a sufficient resolution to 

distinguish between all locations in this word.  However, qualitatively similar results are 
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obtained with higher and lower numbers of units). When a letter was present in a word, these 

units assumed Gaussian activation values with peak activity around the unit reflecting the 

relative position of the letter in the word. For example, in the word ‘cat’, the letter ‘c’ had a 

Gaussian activation with a peak around unit 4, ‘a’ had a peak around 10 and ‘t’ around 16 

(see Figure 6B; see also Figures 1 and 7 in Gomez et al, 2008). Following Gomez, the exact 

activation values of a certain letter for a given word were computed as following: The 19 

units representing this letter were considered to encompass the full length of the word 

regardless of its length, and a value representing the location of the peak was computed 

based on the relative location of the letter in the word.  For example, for the letter ‘a’ in the 

word ‘cat’, the location of the peak was in the middle of the range 0-19, that is, 9.5.  A 

Gaussian distribution centered on the “true” location of each letter was then spread across 19 

equal bins across the 0-19 range.  The standard deviation of the activation function was set to 

the range of the Gaussian (and see Supplementary Material for additional simulations 

showing how the width of the Gaussian noise distribution impacts performance). These 

activations were then scaled by the total area such that the total activation of all units equaled 

1, corresponding to a probability function. For simplicity, the Gaussian activation functions 

of all letters had the same variance. Units of letters that did not appear in the word had 0 

activation.  

 



35 

 

 

Figure 6. a) Model architecture employed in Simulation 2.  b) Examples of a word 

representation illustrating the overlap Model’s coding scheme used in the Simulation.   

 

Initial training vocabularies were selected using the same methods as for Simulation 

1a.  In additional simulations, we investigated how competition between different positions 

of the same letter affects the results by manipulating the number of anagrams per letter string 

in the Hebrew-like set (2,4 or 8 anagrams).  
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The network architecture contained three layers (Figure 6A): the input, one hidden 

layer with 400 units, and a semantic output (only one hidden layer was used because there 

was no separation of identity and position information as in Simulation 1). The global 

learning rate was set to 1/10
th

 that of Simulation 1a based on pilot simulations aimed at 

achieving positive gradient descent linearity during training. The outgoing weights from the 

input layer were also scaled down by a factor of 30 to reduce the saturation (all 0’s or 1’s in 

the first hidden layer), which slows learning. In all other respects, training and testing of this 

simulation was identical to the methods reported for Simulation 1a.  

 

Results and Discussion 

Transposed letter priming for the various conditions is presented in Figure 7, and the 

values obtained for letter substitution and letter transposition for the simulation of the 

English-like stimuli and the Hebrew-like stimuli using 8 anagrams per letter string are 

presented in Table 2 (‘Artificial words’). Similar to Simulation 1, TL priming was 

substantially higher for the English-like stimuli than the Hebrew-like stimuli. The effect 

increased with number of anagrams per letter-string in the Hebrew-like set, confirming, once 

again, that it is the existence of anagrams that pushes the network to develop sensitivity to 

letter position. 

  Letter 

transposition 

1-Letter 

substitution 

2-Letter 

substitution 

TL 

priming 

effect 

 

Artificial 

words 

English-like 0.99 0.16 0.06 0.83 

Hebrew-like 0.6 0.13 0.06 0.47 

 

Real 

words 

 

English 

words 

0.90 0.08 0.03 0.82 

Hebrew 

words 

0.68 0.06 0.01 0.62 

 

Table 2: Correlations between primes and targets, and the TL priming effect, for the 

artificial English-like and Hebrew-like words in Simulation 2a (Hebrew-like condition with 

8 anagrams per letter string) and English and Hebrew in Simulation 2b (real words). 
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Figure 7. TL priming effects for the English-like and Hebrew-like words used in Simulation 

2a. ‘Eng’: English; ‘Heb’: Hebrew. The number besides the label ‘Heb’ refers to the number 

of anagrams per letter string in the Hebrew-like condition. Error bars represent the 

standard error of the mean across the two runs of the simulation 

 

Unlike Simulation 1, we could not investigate network representations separately for 

identity and position due to the intertwined nature of the input. Instead, we examined the 

representations formed in the hidden layer by presenting the network with pairs of random 5-

letter nonwords (letter strings that the network has not been exposed to during training) and 

examined the Euclidean distance between them. Pairs could either have the same letters in 

different order or they could include completely different letters. This way, we could 

examine to what degree the network in each language condition tends to separate 

representations that are differentiated based on letter-order alone compared to those that are 

differentiated based on identity and order. Figure 8 shows the results (averaged over 1000 

random repetitions for each condition and each of the two simulation runs). It is clear that 
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while the average distance between representations of words with different letters was not 

strongly modulated by language, the distance between representations of words with the 

same letter strings in different positions was. Specifically, the English-like set produced 

smaller average distances than the Hebrew-like set, an effect that became stronger the more 

anagrams the Hebrew set included.  

 

 

Figure 8. Mean Euclidean distances between pairs of hidden representations of non-words 

differing from each other by letter position or letter identity in Simulation 2a. ‘Eng’: 

English; ‘Heb’: Hebrew. The number besides the label ‘Heb’ refers to the number of 

anagrams per letter string in the Hebrew-like condition. The error bars represent the 

standard error of the mean across the two runs of the simulation. Some error bars are too 

small to be identifiable. 
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Simulation 2b: Real words 

 Our final simulation examined the network using the overlap model’s representations 

with real words as inputs, to confirm, once again, that our results generalize to the actual 

statistics of the two languages.  

Methods 

Training Patterns, Network Architecture and Procedure 

 Stimuli were real English and Hebrew words chosen from the same two databases as 

in Simulation 1b, under the restriction of a frequency higher than 1 word per million. Once 

again, words were sampled while maintaining equivalent anagram statistics to that of the full 

database. The training vocabularies contained 10000 words, both to increase the validity of 

our results, as well as to increase the probability of each letter occurring in various positions 

over the entire set of stimuli, without requiring overly extensive computational resources 

(see the Supplementary Materials for further analysis of how training-sample size affect TL 

priming in our model). The network consisted of 3000 units in the hidden layer (keeping the 

relative number of units to input samples roughly equal to the previous simulations). As 

before, the network was trained twice using different stimuli samples and different initial 

conditions. We also repeated the analysis of hidden representations (using non-words pairs 

of various lengths, but keeping the same length within a pair) as well as the analysis 

presented in Simulation 1b regarding priming effects as a function of word length. In this 

last analysis, we examined only transpositions of adjacent letters, to avoid biases caused by 

the fact that long words can have transpositions of very distant letters whereas short words 

cannot (this was not an issue in Simulation 1 because the coding scheme used in that 

simulation does not differentiate between close and distant transpositions). 

 

Results and Discussion 
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Table 2 (‘Real words’) presents the effects of letter transposition and letter 

substitution for each language. The overall TL priming effect of the two languages, its 

dependency on word length, and the corresponding differences in average Euclidean-

distance between representations are displayed in Figure 9. Replicating the findings of 

Simulation 1b, TL priming was stronger for English compared to Hebrew, a difference that 

was most strongly pronounced for short words. Similar to Simulation 2a, smaller 

representational distances were found in English compared to Hebrew for pairs of transposed 

non-words, but not for pairs of non-words with different letters. Combining the results of 

Simulations 2a and 2b together, it is evident that the more anagrams a language has, the 

stronger the sensitivity to letter position it produces, resulting in more separable 

representations of words with the same letters in different positions and, consequently, 

higher TL priming. Thus, Simulation 2 replicates the central findings of Simulation 1, 

showing the robustness of this mechanism across different network architectures and input 

coding schemes. 
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Figure 9. TL priming effects and average Euclidean distances between hidden 

representations in Simulation 2b. 
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General Discussion 

In the present study we investigated how a simple learning architecture that maps 

orthography to meaning performs in tasks such as letter-transposition and letter substitution 

when it had learned to process words in the context of different linguistic environments. The 

results of our investigation are clear cut: Despite inherent neurobiological noise in position 

coding, emergent flexibility (or a lack thereof) in coding letter order is strongly shaped by 

the statistical properties of the linguistic environment (c.f. Grainger & Whitney, 2004; 

Norris & Kinoshita, 2012). Specifically, our simulations show that when the words of the 

language are often differentiated by the order of their constituent letters (e.g., Hebrew, 

Arabic), relative rigidity of letter-position coding naturally emerges through learning when 

mapping a visual word form onto its meaning. In contrast, when words in a language differ 

mainly by the identity of their constituent letters (e.g., English, French, Spanish), the 

insensitivity to letter-position due to the neurobiological noise in early visual representations 

is passed forward throughout the network and the system learns to recognize words primarily 

based on letter identity. This basic phenomena has not been previously addressed or 

explained in prominent popular modeling frameworks (e.g., Grainger & Whitney, 2004; 

Davis, 2010; Norris et al., 2010; but see Baayen, 2012). 

Our findings suggest that an important statistical property that shapes sensitivity or 

insensitivity to the order of letters, and thereby predicts cross-linguistic differences in TL 

effects, is the proportion of anagrams in the language. This is well demonstrated by the 

strong relationship between the number of anagrams in Hebrew versus English at various 

letter-lengths, and the cross-linguistic differences in TL effects. Our modeling approach also 

allowed us to examine the structure of the internal representations that develop during 

learning. This reveals that the model learns not only to rely more strongly on positional 

information in a linguistic environment that requires it, but that it also learns more distinct 

(i.e. separated) representations of position information. This work therefore extends a recent 
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investigation by Baayen (2012) using NDL, showing stronger loadings for positional 

information in biblical Hebrew relative to English. Our model, however, provides a 

mechanistically-detailed account of what a “higher loading” implies: it is not (only) that the 

network learns to rely more on positional information, but that it develops, through the 

process of learning, internal representations that encode positional information more 

distinctly. Relatedly, this account offers a developmentally plausible learning theory of 

reading similar in principle to that of NDL, but that offers additional detailed insight into 

how and why particular internal representations emerge during learning. Consequently, the 

present approach can, in principle, trace clear developmental predictions regarding how 

reading and its supporting representations are shaped in a given language through exposure 

to larger and larger corpora of words.  In turn, this type of approach can capture how readers 

gradually derive the statistical properties of their language, thereby determining their reading 

behaviour (see Yermolayeva & Rakison, 2013, for additional discussion related to the 

connectionist modeling of development). 

Our findings speak to the heart of a recent heated debate regarding what drives TL 

priming effects (see Frost, 2012a,b). Some views have considered flexibility in letter 

position coding and its subsequent behavioural effects as stemming from the hardwired 

neurobiological property of the visual system (e.g., Whitney, 2001; Grainger & Hannagan, 

2012). Some recent literature has gone even further to argue that TL effects are observed 

also with primates, thereby proposing that the front-end of reading is supported by neural 

mechanisms that are non-linguistic in nature (Grainger et al., 2012; Ziegler et al., 2013; but 

see Frost & Keuleers, 2013, for a discussion of TL effects in Baboons). Our simulations 

speak directly to this controversy. Assuming that there is indeed an inherent neurobiological 

noise in registering letter position as compared to letter identity (as instantiated in our 

various simulations), what eventually permits flexibility or inflexibility in letter position 

coding is the structure of the linguistic environment.  
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 The present study highlights the clear benefit in developing models of word 

recognition that are not tailored to fit specific sets of data from a specific language, and that 

are not based on ad hoc hardwired constraints. The potential limitations of such models is 

best exemplified by considering the Open Bigram approach outlined in the SERIOL model 

(Whitney, 2001). Although the original model targeted effects such as relative position 

priming (e.g., Peressotti & Grainger, 1999), its subsequent developments (e.g., Grainger & 

Whitney, 2004; see Whitney & Cornelissen, 2008, for a discussion) were mainly set to 

account for TL effects in English and posited open bigrams as the computational 

mechanisms that produce this specific behavior. The model was then evaluated in terms of 

whether its hypothesized organization indeed resulted in the behavior it was designed to 

describe (for example, whether it produced the various TL effects revealed in English). 

Finally, once it did, its architecture became a theoretical construct for explaining behavior; 

Open bigram representations in the brain were postulated to explain insensitivity to letter-

order, without recurrence to independent empirical support (e.g., Dahaene et al., 2005).  

This state of affairs and its limitations have been described in detail by Rueckl (2012), 

who labeled this type of modeling as the “reverse engineering approach to cognitive 

modeling”. In the context of reading research, rather than inform us about what underlies 

reading behavior and how it is shaped by the characteristics of the writing system, the 

outcome of the game with these models is more or less predetermined. Instead of searching 

for the full scope of constraints that underlie a particular behavior, modelers explicitly 

incorporate their own hypothesized constraints into their model, which then serves as a post 

hoc existence-proof for its capacity to describe the narrow set of data specifically selected by 

the modelers. This strategy runs the risk of producing models that provide a highly precise 

fit (and by proxy, an apparent explanation) of the empirical research, simply because they 

overfit a well-specified and selected array of findings (see Woollams, Lambon Ralph, Plaut, 

& Patterson, 2010, and Coltheart et al. 2010, for a discussion). Perhaps more importantly, 
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this approach often fails to explore and predict new types of phenomena that could emerge 

from general computational principles that a model instantiates (McClelland, 2009; 

McClelland et al., 2010). Therefore, the success of the model in simulating the desired 

behavior does not necessarily teach us something interesting about the source of that 

behavior. 

Here, we offer an alternative approach to understanding reading and, in particular, cross-

linguistic differences in reading. Our study emphasizes the critical insight gained by 

employing simple and general learning, processing, and representation mechanisms and 

examining how they learn the statistical characteristics of different linguistic environments. 

Our approach, therefore, closely resembles standard experimental methods of studying 

reading, in that we experiment on the model to understand both how and why it learns to 

performs the way it does.  

An apparent limitation of this approach is that it does not produce a model that generates 

detailed quantitative fits for the wide range of behavioral phenomena characterizing reading 

in various orthographies. However, this was explicitly not the goal of the current endeavor. 

Accounting for a wide set of phenomena (e.g., including the specific priming conditions in 

which Hebrew primes generates inhibitory effects; Velan & Frost, 2010) would naturally 

require more extensive architectural complexity, more sophisticated representations, and 

very large training vocabularies. Without denying that quantitatively accurate models have 

important contributions (e.g., PMSP; Plaut et al., 1996), these models also suffer from a 

complexity that often obfuscates the mechanisms that drive specific effects. Our aim in the 

present study was not to build yet another complex model of visual word recognition. 

Rather, we opted to use a widely accepted set of modeling principles to experimentally probe 

what drives cross-linguistic differences in TL effects. This enabled us to make our central 

theoretical conclusion that TL effects emerge from the interaction of neurobiological noise 

and the linguistic environment. By shaving off unnecessary complexity, we also were able to 
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show that these main theoretical constructs are both necessary and sufficient to explain a set 

of phenomena which have rarely been addressed by computational model to date that have 

reported quantitative fits of data in English (e.g., Grainger & Whitney, 2004; Norris & 

Kinoshita, 2012; cf. Baayen, 2012). This is a key strength of the fundamentalist approach 

that we have adopted, and serves to highlight the critical importance of modeling cross-

linguistic TL effects.  

In light of the present findings, it is therefore clear that any comprehensive model of 

visual word recognition must address the empirical effects highlighted in the present work.  

It is therefore worth considering how some other influential models could, potentially, be 

able to capture these phenomena. For example, the precursors to the Spatial Coding model 

(Davis, 2010)---although not the Spatial Coding model itself---did instantiate a learning 

mechanic.  It is therefore possible that a revised Spatial Coding model that contains a similar 

learning mechanic may become sensitive to the statistics of a language as a function of 

experience, much as the current model does. Following a different vein, the Bayesian Reader 

model (Kinoshita & Norris 2009) focuses on processing as opposed to learning dynamics, 

assuming that certain basic statistical information can, in principle, be extracted from the 

environment. From this basic statistical information, it is also possible that more complex 

effects, such as those related to cross-linguistic differences in TL effects, can emerge as the 

representations of the environment interact with the model’s processing dynamics. For 

instance, in this model, visual word recognition is viewed as a gradual process that is 

terminated when sufficient evidence regarding the identity of the word has accumulated. 

Because such a process is sensitive to neighbourhood effects, the statistical properties of a 

language, such as anagram frequency, could influence the number of competing neighbours 

that the recognition process needs to overcome in order to terminate successfully. 

Consequently, the model may require that more precise information, particularly with 

respect to letter-position, be accumulated before generating a response. Resultantly, this 



47 

 

model might exhibit some cross-linguistic TL effects (although see our simulations reported 

in the Supplementary Materials, indicating that simple manipulations of orthographic density 

may not be enough to account for the present effects).   

It is important to note, however, that models often behave in complex and non-intuitive 

ways well beyond the scope of simple verbal postulations --- indeed, such behaviour is one 

of the core reasons why models are valuable tools in psycholinguistic research.  

Consequently, our conjectures regarding other models must be evaluated via explicit 

simulations to establish the actual capacities of these frameworks, to better understand the 

computational principles that may give rise to cross-linguistic TL effects, and to 

contextualize the modeling approach in relation to reverse-engineering (Rueckl, 2012).  

In conclusion, the success of a fundamentalist learning model in producing cross-

linguistic effects in orthographic processing gives promise to producing a universal learning 

model of reading that explains a broad set of findings assembled from different languages 

and different orthographic systems (Frost, 2012b). It also shifts research on orthographic 

processing towards theories that focus on general modeling principles that simultaneously 

consider how a model learns about the environment, how it represents the environment, and 

how it processes information. In so doing, it elucidates how learning, representation, and 

processing principles interact with the statistical properties of a given linguistic environment 

to capture, explain, and predict a range of empirical phenomena that force a re-consideration 

of the core phenomena that a model of written word recognition should explain, and of the 

place of fundamentalist modeling in subsequent theoretical advances. 
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