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Abstract 

The parallel distributed processing (PDP) framework is built on neural-style 

computation, and is thus well-suited for simulating the neural implementation of 

cognition.  However, relatively little cognitive modeling work has concerned 

neural measures, instead focusing on behavior.  Here, we extend a PDP model 

of reading-related components in the event-related potential (ERP) to simulation 

of the N400 repetition effect.  We accomplish this by incorporating the dynamics 

of cortical post-synaptic potentials—the source of the ERP signal—into the 

model.  Simulations demonstrate that application of these dynamics is critical for 

model elicitation of repetition effects in the time and frequency domains.  We 

conclude that by advancing a neurocomputational understanding of repetition 

effects, we are able to posit an interpretation of their source that is both explicitly 

specified and mechanistically different from the well-accepted cognitive one. 

 
 
Keywords:  Parallel Distributed Processing; ERPs; N400; Visual Word 

Recognition; Repetition Effects; Post-Synaptic Potentials; Neural Computation 
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1.1 Introduction 

Visual word recognition is a temporally extended process requiring integration of 

information at multiple levels of representation (e.g., orthography, phonology, 

semantics).  Because visual word recognition requires the interaction of 

information at many levels, attempts to specify its mechanisms have benefitted 

from the instantiation of computational models, which allow theories about 

complex interactions between representational levels to be made explicit.  In 

computational models, theories about how representations interact can be 

implemented formally, and simulations can be conducted to determine whether a 

particular theory can produce the data it has been formulated to explain.  Models 

from numerous theoretical frameworks have been applied to the problem of 

visual word recognition, most notably the Parallel Distributed Processing (PDP; 

Seidenberg & McClelland, 1989, Plaut, McClelland, Seidenberg, & Patterson, 

1996; Harm & Seidenberg, 2004), Dual-Route (Coltheart, Rastle, Perry, 

Langdon, & Zeigler, 2001; Perry, Ziegler, & Zorzi, 2007), and Bayesian (Norris, 

2006) frameworks.   

 PDP, Dual-Route, and Bayesian models differ substantially in their 

implementation and theoretical stance, varying in details such as how information 

is represented, the importance of learning, the type and richness of information 

available to the models, the nature of models’ internal computations, and how 

important it is for those computations to be analogous to neural computations.  

However, one point on which proponents of most frameworks agree is that word 

recognition models could benefit from more contact with cognitive neuroscience 
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(see Harm & Seidenberg, 2004; Perry, et al., 2007, Griffiths, Chater, Kemp, 

Perfors, & Tannenbaum, 2010).   

There is good reason for this agreement:  typically, computational models 

of visual word recognition have the goal of simulating behavioral data such as 

reaction time or accuracy. These are fundamentally end state measures, which 

means they provide information about the outcome of visual word recognition, 

not its temporally extended internal working. The agreement that models could 

benefit from more contact with cognitive neuroscience stems from the sense that 

measures of brain activity collected while visual word recognition is taking place 

might provide important constraint to models’ internal dynamics—and, thereby, a 

better understanding of visual word recognition’s internal workings.  

 Precisely because of the temporally extended nature of visual word 

recognition, one method that has been informative in its study is the Event-

Related Potential (ERP) technique.  Because the neural source of ERPs is 

excitatory and inhibitory1 Post-Synaptic Potentials (PSPs) that can be measured 

essentially instantaneously at the scalp, the temporal resolution of ERPs is on 

the order of milliseconds;  this scale is appropriate for the study of visual word 

recognition, which is known to unfold within, at most, 500 ms after stimulus onset 

(Grainger & Holcomb, 2009).   

                                                        

1 Note that IPSPs and EPSPs do not cancel each other out, despite having 
opposite sign, because when measured distally, at the scalp, EPSPs typically 
outweigh IPSPs, or, at least, an equal number of IPSPs and EPSPs do not 
typically occur in synchrony; for review, see Fabiani, Gratton, & Federmeier, 
2007. 
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 That ERPs are recognized as an excellent tool for the study of visual word 

recognition has resulted in a voluminous literature on the topic.  Recently, it has 

been expressed by many authors that this literature would benefit from the 

theoretical unification that can be achieved by the application of a computational 

model (Barber & Kutas, 2007; Van Berkum, 2008; Laszlo & Federmeier, 2011; 

Laszlo & Plaut, 2012).  Especially, it has been noted that whereas substantial 

understanding exists regarding the functional causes of ERP effects, there is 

much less known about the mechanistic sources of these effects at the level of 

neural implementation (Laszlo & Armstrong, 2013).  Thus, just as agreement is 

emerging in the modeling literature that word recognition models could benefit 

from more contact with cognitive neuroscience, complementary agreement is 

emerging amongst electrophysiologists that the ERP word recognition literature 

could benefit from theory building through the use of computational models. 

 

1.2 The ERP Model 

In prior work, we began bridging the gap between computation and cognitive 

electrophysiology through development of the ERP model (Laszlo & Plaut, 2012).  

The ERP model is heavily based on PDP models that preceded it (e.g., 

Seidenberg & McClelland, 1989; Plaut et al., 1996; Harm & Seidenberg, 2004); 

Figure 1 displays the architecture of the model, which, like its predecessors, 

takes a distributed pattern of orthographic input, and after multiple non-linear 

transformations in hidden layers, produces a distributed semantic output. 
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 An important difference between the ERP model and its predecessors is 

that it is required to simulate not only behavior, but also ERP component 

effects—specifically, effects pertaining to the N400 (a component thought to 

represent attempted lexical-semantic access; see Kutas & Federmeier, 2011).  In 

order to enable this, the ERP model was given neurally realistic properties not 

typical in PDP reading models.  Primarily, the ERP model’s departure from its 

predecessors comes in its separation of excitation and inhibition.  This separation 

confers several neurally realistic properties, such as more excitatory than 

inhibitory units (important for simulation of ERPs, where EPSPs are thought to 

dominate), separate time courses of excitation and inhibition, and fast and slow 

populations of inhibition.  However, the ERP model lacks numerous 

characteristics of a true cortical system.  We theorized that bringing additional 

neural realism to the model would enable it to simulate more N400 effects, and, 

further, that providing this realism could provide insight into the neural 

mechanisms of the simulated effects—an area essentially unexplored in the 

N400 literature.   

 The ERP model simulated N400 effects observed in response to 

unconnected text.  Of course, unconnected text is dissimilar to natural reading in 

that it does not involve context.  To extend the ERP model’s relevance to realistic 

reading, therefore, it is important to extend its sensitivity to context.  The simplest 

form of context, and a form that exerts a robust effect on the N400, is immediate 

repetition of a wordform (e.g., Rugg & Nagy 1987; Rugg, 1985; Rugg, 1990; 

Nagy & Rugg, 1989).  This minimal context requires that processing a wordform, 
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in the simplest possible manner, be dependent on what has come before it.  

Consequently, providing an explicit mechanistic account of this phenomenon is 

an important first step in making the bridge between understanding the ERP 

response to isolated items and understanding the response to items in context. 

  The N400 repetition effect is characterized as a positivity in response to 

second presentation of a wordform.  The accepted cognitive theory of this effect 

is that after an initial presentation of a wordform, its semantics do not 

immediately deactivate; rather, they decay over time (Rugg, 1985).  Thus, when 

an item is repeated, its associated semantics are still active, and, therefore, less 

elaborate semantic processing is required, resulting in a smaller N400 to 

repetitions.  This theory is widely accepted, and essentially has not been 

challenged since its formulation (e.g., Rugg, 1990; Besson, Kutas, & Van Petten, 

1992; Laszlo & Federmeier, 2007).  In extending the neural realism of the model 

to allow it to simulate N400 repetition effects, we sought to explore whether a 

neuro-mechanistic explanation would provide novel insight into their generally-

assumed cognitive basis. 

 Additionally, although much of the word recognition literature has focused 

on time-domain ERPs, there is a growing body of work highlighting insights 

gained from ERPs in the frequency domain.  For instance, recent work has 

demonstrated that time-domain N400 effects may be due to changes in particular 

frequency bands and not to changes in the full power spectrum, as would be 

observed if all neurons in the population generating the N400 modulated their 

activity to the same degree following a repetition (Roehm, Bornkessel-
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Schlesewsky, & Schlesewsky, 2007).  Frequency-dependent changes may also 

have important ramifications for the brain’s capacity to synchronize local and 

distal neural populations that code for a particular representation in a distributed 

fashion (Weiss & Mueller, 2003; Mellem, Friedman, & Medvedev, 2013).  

Frequency-domain effects are therefore of theoretical interest, but have been 

completely unstudied in the computational reading literature.  For these reasons, 

we sought to incorporate frequency-domain analysis into our simulations—to our 

knowledge, for the first time in this literature. 

 

2.1 The Alpha Model 

In the ERP model, mean semantic activation is linked to mean N400 amplitude.2  

Thus, for the model to simulate reduced N400s with repetition, it must display 

reduced mean semantic activation when repetitions occur. That is, units must 

have the capacity to become fatigued.  It is important that this fatigue occur 

selectively, acting on single units as opposed to the entire semantic layer, 

because units that have not recently been active must be able to activate to 

maximum, as when a novel item is presented instead of a repetition.  

 The desired dynamic of activation for individual semantic units is thus one 

where a peak of activation (response to a first presentation) is followed by 

gradual decay, as posited by the cognitive theory of N400 repetition effects and 

also as necessary to reduce N400 amplitude with repetition.  Crucially, this 

                                                        

2 A voltage determined by distal summation of numerous cortical IPSPs and 
EPSPs. 
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dynamic can be formally expressed by the alpha function; used in neural 

computation to simulate PSPs: 

 

Equation 1:  The alpha function 

 

In the alpha function as used classically (e.g., Bugmann, 1997), V is a measure 

of membrane potential (voltage), α a scaling constant, t the number of time 

steps since a unit became active, and T a free parameter that determines when 

V peaks (e.g., David, et al., 2006).  The shape of the alpha function, as defined in 

Equation 1 and as used in our simulations, is displayed in Figure 1. 

 That the alpha function is used in simulation of PSPs makes it especially 

appropriate for use in our model, not only because it produces the desired 

dynamic, but also because cortical PSPs are the source of the ERP signal 

(Fabiani, Gratton, and Federmeier, 2007).  The result, V, of the alpha function 

represents a voltage, as does the N400, to which semantic unit activations are 

linked.  Indeed, the appropriateness of this function is supported by use of an 

analogous function in dynamic causal modeling of evoked responses (see 

Daunizeau, David, & Stephan, 2011), where this type of function has been shown 

to approximate activation dynamics in actual neurons (David et al., 2006).   

 Thus, independent observations about the dynamics of the function 

needed to implement N400 repetition effects, the neural source of those effects, 

and the computational properties of the alpha function converge to suggest a 
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mechanism for simulation.  Therefore, in our attempt to extend the ERP model to 

simulation of N400 repetition effects, we constrained excitatory unit activations to 

the envelope of the alpha function (as specified in Equation 1).   

 In what follows, we will continue to refer to the Laszlo & Plaut (2012) 

model as the ERP model, but we will refer to the model constrained with the 

alpha function as the alpha model.  Application of the alpha function (Equation 1) 

to excitatory unit activation in the alpha model is the only distinction between the 

two models3.  The goal of the simulations presented below was to determine 

whether a selective fatigue factor, as implemented with the alpha function, 

constitutes a formally sufficient mechanistic explanation for N400 repetition 

effects.   

      

2.2 Methods 

ERPs. Target data were drawn from the single-item ERP corpus, which 

has been described in detail elsewhere (Laszlo & Federmeier, 2011). Briefly, 

EEG was collected from 120 participants who read an unconnected sequence of 

text including 75 each words (DOG), acronyms (DVD), pseudowords (DOD) and 

illegal strings (XFQ).  Each of these items repeated once. 

Model Architecture. The architecture of the alpha model is identical to that 

used in the ERP model (see Figure 1).  Exhaustive details of model 

implementation, including connectivity, learning algorithms, parameter values, 

                                                        

3 Note that, because the architecture of the models is in all other ways identical, 
the alpha model formally retains the ability to simulate any phenomenon the ERP 
model can simulate. 
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activation equations, training, and testing, are available in the Supplementary 

Materials; the simulation code is also available from the first author.   

 In the ERP model, excitatory units activated according to the sigmoid (see 

Figure 1).  In the alpha model, excitatory units activate as the product of the 

sigmoid and alpha functions—this is the only difference between models.  

Importantly, scaling by the alpha function is performed on a per unit, rather than 

global basis. That is, V is calculated separately for each unit, and in these 

calculations, t is incremented not with every time step, but only  when a unit’s 

activation on the prior time step exceeds a threshold.  The result of this is that 

only units that respond to an input strongly become fatigued.  Units that do not 

respond strongly to an input do not become activated above threshold, and 

therefore do not become fatigued (see Figure 1).  Thus, if repetition effects are 

observed in the model, they are due not do a global fatigue mechanism that 

ensures that activations decrease over time, but rather to selective fatigue of only 

units that are activated in response to a given input, despite the model never 

being trained that this is the appropriate dynamic (see below).      

Training.  On each trial, one orthographic input was clamped on, and 

activation was allowed to propagate through the network.  The activation in 

semantics was then compared to the target semantic activation associated with 

that orthographic input to determine how the weights should be adjusted to 

improve future performance using backpropagation (Rumelhart, Hinton, & 

Williams, 1986), with the constraint that the excitatory connection weights had a 

lower bound of 0.  Training items consisted of 62 words and 15 acronyms (details 
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of all representations and of the modified backpropagation procedure are 

available in the Supplementary Materials).  Importantly, the network’s activation 

reset after each item during training; the model received no training on 

repetitions.  The model’s output dynamics in response to repeated items must 

therefore be an emergent characteristic of its architecture, not the result of 

training on the desired response to repetitions.  After training, the model’s 

weights were fixed and not modified during testing (for a complementary 

approach, see Oppenheim, Dell, & Schwartz, 2010).   

Testing.  After training, the network was presented with input pairs of the 

form AA (repetitions) or AB (non-repetitions).  A single time step of blank input 

intervened between items in each pair. In testing, the network was not re-

initialized between items in a pair. 

 In addition to being tested on the trained items, the network was tested on 

repetitions and non-repetitions of pseudowords and illegal strings.  The nonwords 

provide a difficult test for the model, because they were not trained.  Thus, when 

presented with nonwords at test, the model must produce repetition dynamics it 

has never been trained on, in response to items it has never been exposed to—

and, in the case of frequency-domain analysis, in a domain it was never originally 

designed to simulate. 

 A control simulation, performed in order to assess whether application of 

the alpha function is necessary for simulation of repetition effects, was also 

conducted using the original ERP model—in this simulation, all methods were 

identical to those described above, but the alpha function was not applied. 
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2.3 Results 

2.3.1 ERPs 

Grand-averaged ERPs (Figure 2) were computed over the middle parietal 

electrode for each item type on first and second presentation.  Data were 

trimmed to the time-window corresponding to N400 effects in this data set: 250-

450 ms (Laszlo & Federmeier, 2011).  To maximize the consistency of ERP and 

simulation analyses, these data were again trimmed to a statistically-defined 

window of interest, the full width at half-maximum (FWHM) of the N400 window. 

 

Time Domain.  Repetition effects were assessed in the time domain by analyzing 

mean amplitudes for each item type at each level of repetition using Linear Mixed 

Effects Regression (LMER; Baayen, 2008), with item as a random factor and 

item type as a fixed factor.  P-values were generated via Markov-Chain Monte 

Carlo (MCMC) sampling.  Analyses replicated the standard finding: N400 mean 

amplitudes were reduced for all item types on second presentation (all pMCMC < 

.0002).  

 

Frequency Domain.  Data were also analyzed in the frequency domain—

this provides additional constraint on the model—especially since the model was 

not trained on any aspect of the appropriate frequency response—as it requires 

that simulated ERPs (sERPs) have not only the same qualitative properties as 

ERPs, but also similar waveshapes.  For these analyses, the fast Fourier 
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transform (FFT) was applied to averaged, unfiltered ERPs corresponding to the 

first and second presentation of each item type (Figure 2).  As is evident in 

Figure 2, repetitions are characterized in the frequency domain as an 

enhancement of low frequency (2-4 Hz; alpha band) power for all item types (all 

pMCMC < .0003).  

 

2.3.2  The Alpha Model 

Model sERPs were generated by averaging semantic activation on each 

time step for the second item in each AA or AB pair (Figure 2).  As is evident 

from the Figure, sN400 amplitudes were reduced for repetitions of each item 

type.   For quantification of these effects, the sN400 was defined as the temporal 

region that corresponded to the FWHM of the simulated waveform.  

 

Time Domain.  As in the ERPs, each lexical type showed a reduction in 

sN400 amplitude with repetition (Words: pMCMC < 0.0001; Pseudowords: 

pMCMC = 0.0001; Illegal strings: p < 0.0001; Acronyms: pMCMC = 0.0364).  

Analyses were conducted on identical portions of the data for all item types (i.e., 

word and nonword repetition effects were not quantified differently)4.  No reliable 

repetition effects were observed, for any item type, in the control simulation. 

 

Frequency Domain.  Model power-frequency curves for each item type are 

presented in Figure 2.  Note that although the analogous frequency data were 

                                                        
4 For details on how the model performs lexical decisions (i.e., tells apart words 
from nonwords), see Laszlo & Plaut, 2012. 
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extracted for the model, this was done using an alternative but formally identical 

mathematical technique made possible by having direct access to the individual 

unit activations (see the technical appendix for details).  Note the similarity 

between simulation and empirical data, despite the fact that the model was never 

trained in the frequency domain.  Moreover, note that there is an increase in low-

frequency power in model spectra, as in the ERPs.  In the lowest model 

frequency band, all lexical types show a numerical increase in power on second 

presentation although the effect was not significant for acronyms (which consist 

of only 15 items and therefore suffer from the lowest statistical power; less 

conservative tests reveal significant effects for acronyms as well).  Because 

model units are arbitrary, we are not able to specifically link this result 

quantitatively with the 2-4 Hz (alpha) band in the ERPs; this is why we phrase 

analysis of the model data in terms of its “lowest” frequency band; emphasizing 

the qualitative similarity of model and ERPs even though no specific quantitative 

link is possible at this stage of the research. Again, no reliable repetition effects 

were observed for any item type in the control simulation.   

  

4.1 Discussion 

The goal of the present simulations was to advance a neuro-mechanistic account 

of a cognitively well-understood phenomenon:  the N400 repetition effect.  We 

worked under the assumption that one way to improve the cognitive power of the 

ERP model would be to improve its neural realism.  To this end, we considered 

several sources of information:  the cognitive theory of N400 repetition effects 
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(priming due to slow activation decay), the desired empirical dynamic of N400 

repetition effects (reduced N400s with repetition), and the computational 

properties of the neural system underlying the ERP signal.  Together, these 

considerations suggested that by applying a an approximation of the shape of 

PSPs to the ERP model, we could produce the desired empirical effects.    

 Thus, we created the alpha model.  The alpha model was able to simulate 

N400 repetition effects in both the time and frequency domains.  In the frequency 

domain, it was able to do so despite never receiving training on 1) repetitions, 2) 

nonwords, or 3) the desired frequency response, and not having been originally 

designed to study the frequency domain.  This success in simulating phenomena 

far afield from those it was trained on (single presentations of words and 

acronyms in the time domain only) suggests that core characteristics of the 

model’s architecture are deeply similar to characteristics of the analogous neural 

system.  A control simulation, without the alpha dynamic, did not simulate any 

repetition effects.  This suggests that it was, specifically, application of the alpha 

function that enabled the alpha model’s success.   

 Analysis of the model in the frequency domain revealed not only that it 

provided a good explanation of the empirical data, but also emphasized the 

importance of low frequency modulation (< 5 Hz) in driving repetition effects.  

Interestingly, these findings are roughly consistent with other studies employing 

simple semantic priming manipulations, which have found changes at  

approximately 8 Hz (Kujala et al., 2011), but differ from studies in semantic 

paradigms employing richer stimuli—such as sentences—which have typically 
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reported higher-frequency changes in coherence (> 30 Hz), as opposed to 

spectral power (see Mellem et al., 2013). One clear explanatory hypothesis for 

this distinction is that the frequency response of neurons involved in semantic 

access is modulated by the degree of context available—additional work, such as 

that proposed for investigation of semantic priming with the alpha model 

discussed below, will be needed to explore this possibility. 

 The canonical view of N400 repetition effects suggests that, when an item 

is repeated, it benefits from priming of its semantic features, meaning that less 

semantic processing is required on second presentation, leading to reduced 

N400s (e.g., Rugg, 1985; for review, see Kutas & Federmeier, 2011).  In the 

model, in contrast, activation of semantic features by a first presentation is 

responsible for reduced sN400s in repetition, but the mechanism of this reduction 

is neural fatigue, not a mechanistically unspecified decreased need for semantic 

processing.  That is, in the model, it is not that semantic features do not need to 

be activated as much on second presentation because they are still partially 

active, it is that they cannot activate as much on second presentation due to 

fatigue.    In producing this insight, the model extends its success beyond simply 

reproducing numerical patterns, to making a novel contribution to what is 

understood about the mechanism of a phenomenon that has been cognitively 

understood for nearly 30 years.    

  As a mechanism, the alpha dynamic is domain general:  that is, it does 

not apply only to single repetition priming.  For example, semantic satiation is the 

extreme case where multiple repetitions of an item cause that item to seem to 
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lose all meaning (for review of this phenomenon and its implications, see Amster, 

1964).  In the model, this phenomenon is, in principle, transparently explained as 

being caused by asymptotic fatigue of semantic features (see Figure 1).    

 As another example, semantic priming effects on the N400 are well-

characterized as reductions in amplitude to targets that are semantically related 

to a prime (e.g., a smaller N400 to CAT in DOG-CAT than to FORK in DOG-

FORK; see Kutas & Hillyard, 1989); these effects are typically similar to, but 

smaller than, N400 repetition effects.  In the model, semantic primes would 

essentially be treated as “partial” repetition primes: some but not all of the target 

semantic features would already have been activated (and thus fatigued) by the 

prime; thus, semantic priming in the model would be similar to, but smaller in 

amplitude than sN400 repetition effects, as in the empirical data.  Similarly, the 

increase in low frequency power would be expected to be smaller (and possibly 

occur at slightly higher frequencies, consistent with Kujala et al., 2011) because 

only a partially overlapping semantic code would be engaged by the prime and 

consequently be fatigued. 

 

5.1 Conclusion 

The success of the present model in capturing a range of novel effects via a 

simple neural fatigue dynamic suggests that fatigue is a powerful mechanism for 

understanding multi-word integration, as exemplified here by single-word 

repetition. The use of a domain-general, biologically-plausible variation of the 

PDP framework provides a basis for extending the model to more nuanced 
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simulation of language electrophysiology—such as that observed in semantic 

satiation and semantic priming.  The model presented here certainly is not a 

complete characterization of all the neural computations that occur during a 

complex cognitive event, like word recognition in context (e.g., it does not 

consider spike trains)—more work will be needed to even further improve the 

neural realism of the model.  However, it 1) is more neurally realistic than any 

reading model that has preceded it and 2) demonstrates the general principle 

that improving the neural realism of reading models empowers them to simulate 

a broader range of effects.  
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Figure Captions 

Figure 1.  (A) Architecture of the ERP model.  INH stands for “inhibitory”. (B) The 

shape of the sigmoid function (inset), and of the alpha function above and below 

threshold. Note that for alpha units, as  t→∞, V→Θ.  

 

Figure 2.  ERP and model (sERP) data in the time and frequency domains.  

Time-domain ERP data consists of grand-averaged responses to first and 

second presentations of words, acronyms, pseudowords, and illegal strings, over 

the middle parietal electrode site; the same data is presented in the frequency 

domain.  Time-domain sERP data consists of responses, averaged over all 

semantic units, to first and second presentations of the same item types.  The 

same data is presented in the frequency domain.   
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