
 

 

A.1 Technical Appendix 
 
Here, we present exhaustive technical details of the neural network simulations 
presented in the paper.  The simulations were conducted in the Light Efficient 
Network Simulator (LENS; for convenience, an archive of the LENS software 
used for these simulations is available at oddjob.psychology.binghamton.edu) a 
freely distributed, open source neural network simulator.   The details presented 
here are sufficient to enable replication of the simulations presented in the paper 
in LENS or any equivalent neural network simulator; additionally, the full 
simulation code is available from S.L. by request.   
 
Network Architecture 
 

 
 
 
Figure A.1:  Network Architecture.  This figure is a replication of Figure 1 from the 
main text. 
 
Description of Each Layer of Units in the Network 
 
Name:  Orthographic Inputs 
Details:  The orthographic input layer consisted of 15 units.  Activation of the 
input units was, in all cases, hard-clamped to either the pattern of activation of a 
given input (i.e., word, pseudoword, acronym, or illegal string), or the “blank” 
input (all zeros) presented between items when presenting two items during 
testing.   
 
Name:  hidden[1] 
Details:  The first hidden layer consisted of 20 units. Activation of units in the 
hidden[1] layer was determined on a by-unit basis by a multiplicative combination 
of the standard sigmoidal function (see Equation A.1 below) and the alpha 
function (see Equation A.2 below).  
 



 

 

Name:  Orthographic Autoencoder [Output] 
Details:  The output of the orthographic autoencoder consisted of 15 units.  
Activation of these units was determined identically as for the units in hidden[1].   
 
Name:  hidden[2] 
Details: The second hidden layer consisted of 50 units.  Activation of units in the 
hidden[2] layer was determined identically as for the units in hidden[1].     
 
Name:  Semantic Output 
Details:  The semantic output layer consisted of 50 units.  Activation of units in 
the semantic output layer was determined identically as for the units in hidden[1].  
 
Name:  Semantic Cleanup 
Details:  The semantic cleanup layer consisted of 30 units.  Activation of units in 
the semantic cleanup layer was determined identically as for the units in 
hidden[1].  
  
Name:  INH units 
Details:  The hidden[1], orthographic autoencoder, hidden[2], and semantic 
output layers each had 1 associated inhibitory (INH) unit.  Activation of INH units 
was determined by the Elbow Function (see Laszlo & Plaut, 2012; Equation A.3 
below). 
 
All units, except those in the input and output layers, were input integrating.   
 
Equations 
 
A.1:  The Sigmoid Function 
 

 
Where: 
 a = activation 
 i = net input 
 
A.2:  The Alpha Function 
 

 
 
Where: 

V = Voltage scaling factor  



 

 

α= constant scaling parameter that determines the maximum value of V 
t  =  number of time steps since a unit became active above threshold θ  
T = free parameter that determines the time step at which V peaks  

 
A.3:  The Elbow Function  
 

 
Where 
 a = activation 
 i = net input 
 h = threshold determining the ‘elbow’ point  
 
Activation of inhibitory units is entirely determined by equation A.3.  Activation of 
excitatory units is determined first by applying equation A.1, then multiplying the 
resultant activation value by a scaling factor determined by equation A.2.   
 
Parameter values used in the model, and their justifications, are given in the 
“Network Parameters” section below. 
 
Connectivity 
The orthographic input layer was fully connected, feedforward, to hidden[1].  
These connection weights were constrained to always be > 0.  
 
The hidden[1] layer was fully connected, feedforward, to the orthographic 
autoencoder output, and to hidden[2].  It was also fully connected, feedforward, 
to its single associated INH unit.  All of these connection weights were 
constrained to always be > 0.   
 
The INHhidden[1] unit was fully connected, feedforward, to hidden[1], but these 
connection weights were constrained to always be < 0.  INH unit connectivity for 
all following layers of representation is identical to the INH unit connectivity 
described here.   
 
The orthographic autoencoder output was connected as described above to its 
single INH unit.   
 
The hidden[2] layer was fully connected, feedforward, to the semantic output 
layer; these connection weights were constrained to always be > 0.  It was also 
connected as described above to its single INH unit.   
 
The semantic output layer was fully connected, recurrently, to the semantic 
cleanup layer (not pictured); these connection weights were constrained to 
always be > 0.  It was also connected as described above to its single INH unit.   



 

 

 
Network Parameters 
Momentum:  0 
Learning Rate:  Dynamically adjusted during training; initial rate = .001 
Number of activation updates (time steps):  50 
Elbow function inflection point (h) = .15 
θautoencoder = .85 
αautoencoder = .65 
Tautoencoder = 4 
θremainder = .18 
αremainder = .33 
Tremainder = 8 
 
Note, θ, α and T were set separately for the autoencoder and the remainder of 
the model.  In the case of θ, the autoencoder’s task is simply easier than the 
semantic portion of the network’s task (i.e., it the autoencoder must learn only 
systematic relationships, while the semantic network must learn arbitrary 
relationships).  This means that activations tend to be stronger in the 
autoencoder than in the remainder of the network, which makes a higher θ 
appropriate.  In the case of α and T, this is because the autoencoder was 
required to complete its task of re-coding orthography faster than the semantic 
portion of the network was required to complete its task of mapping orthography 
onto semantics (as is generally assumed to be the case in the ERP literature 
pertaining to visual word recognition; see Grainger & Holcomb, 2009, for review).  
In order to ensure that V remains in [0,1]  (see Equation A.2), when α changes, T 
must change as well.    
 
Note that the particular parameter values used here were largely arbitrary and 
were primarily only subject to the qualitative constraints outlined above.  Indeed, 
exploratory simulations using slightly different parameter values yielded 
qualitatively similar results to those reported here.  Consequently, the 
performance reported in the present paper is not restricted to only these specific 
values.   
 
Training 
Training was accomplished via back-propagation through time (Rumelhart, 
Hinton, & Williams, 1986).  Error was computed over output layers via cross-
entropy (see Hinton, 1989).  The use of back-propagation here is not meant as 
suggesting that back-propagation is a neurally plausible method of reducing error 
in neural networks.  Rather, back-prop is used as a convenience.  A method such 
as contrastive Hebbian Learning (CHL;  Ackley, Hinton, & Sejnowski, 1985) is 
likely to be closer to that used by neurons, however, in some well-defined cases 
back-prop has been shown to be mathematically identical to CHL (Xie & Seung, 
2003), thus producing identical results, and tend to produce similar results even 
when these exact cases are not met.  Consequently, we employed 



 

 

backpropagation here for convenience, and to leverage the optimizations to the 
backpropgation algorithm that have been instantiated in our simulation. 
 
The back-propagation algorithm was modified such that excitatory-only 
connections could not take on weights < 0, and, conversely, such that inhibitory-
only connections could not take on weights > 0.  This was accomplished by 
simply adding a condition that stated that, if an illegal weight change was to take 
place, that weight instead be set to a boundary value (-.0001 or .0001). 
 
The standard back-propagation algorithm (Rumelhart et al., 1986) assumes 
activation is computed via the sigmoid function.  Here, activation was instead 
computed 1) as a product of the sigmoid function and the alpha function or 2) via 
the elbow function.  Modifications to the back-propagation algorithm were made 
to account for these changes per the application of the chain rule to the partial 
derivatives of error in our new activation functions,exactly as was done for the 
original backpropagation algorithm.  Interested readers are referred to the 
simulation code for the full implementational details.   
 
Error was reduced with no momentum via gradient descent over the error space.  
The auto-encoder was pre-trained for 20,000 epochs before the remainder of the 
network was trained; its weights were then frozen in place and the remainder of 
the network was trained for an additional 15,000 epochs.  Inhibitory weights were 
not trained, but initialized and frozen at small random values; this prevents 
potential instabilities in the network that can be caused by escalating, counter-
acting weight changes in the excitatory and inhibitory units.   
 
During semantic training, examples were clamped on in the input layer, and 
activation was allowed to propagate for 16 time steps.  Error was accumulated 
over only the final 4 time steps.  Note that the model was NEVER trained on 
repetitions, on nonwords, or in the frequency domain.   
 
Examples 
The network was trained ONLY on single presentations of words and acronyms 
in the temporal domain.  The network’s vocabulary consisted of three-letter 
words (65 items) and acronyms (12 items); each of letter of these was 
represented over 5 units in the input layer (5 units per letter x 3 letters = 15 
units).  The orthographic structure of the words was CVC, while the orthographic 
structure of the acronyms required a C in the center position.  This was done in 
order that the orthographic structure of the words and acronyms presented to the 
model be similar to the orthographic structure of the words and acronyms 
presented in the ERP experiment.  In particular, these structural constraints 
ensure that the orthographic neighborhood of the acronyms be lower than that of 
the words; this particular lexical variable is critical in the determination of N400 
morphology (see Laszlo & Federmeier, 2011). 
 



 

 

Semantic representations associated with visual inputs in the model are 1) 
sparse and 2) arbitrary.  Sparseness is implemented in that no more than 7 out of 
the 50 semantic units are ever associated with a given input.  Arbitrariness is 
implemented in that, for each visual input, the associated semantic features are 
chosen randomly.  This arbitrariness is justified in that, at least in English, for the 
type of morphemically simple items used here, orthography-semantics mappings 
are largely arbitrary (see Plaut, 1997).    
 
During testing, the network was additionally exposed to all the possible nonwords 
in its vocabulary.  These nonwords can further be divided into pseudowords (85 
items) and illegal strings (279 items).  Like words presented to the model, the 
orthographic structure of pseudowords is CVC.  Like acronyms presented to the 
model, the orthographic structure of the illegal strings requires a C in the center 
slot.  The reasons for this method of defining pseudowords and illegal strings is 
identical to that given for the same distinction between words and acronyms 
above.   
 
Testing  
Prior to testing, the connection weights in the network were frozen to their values 
at the end of training. 
 
During testing, the network was presented with input pairs of the form AA 
(repetitions) or AB (non-repetitions).  Each item of the pair was presented for 16 
time steps, with a single time step of blank input between each member of the 
pair.  This resulted in a total presentation period of 33 time steps for each pair.  
The input was then removed and the network was allowed to return to an inactive 
resting state over a period of 17 more steps (for a total of 50 time steps for each 
pair of items).  In testing (but not in training), the network was not re-initialized 
between items in a pair (but was re-initialized between pairs). 
 
To extract the frequency domain data, we considered several options.  The first 
option was to simply run a FFT analysis on the sERP waveform in an identical 
manner to the analysis that was applied to the empirical ERP data.  However, the 
model was only run for a total of 50 time steps in the present simulation, leading 
to fewer samples than in the ERP data, and consequently violating the 
assumptions of the FFT more severely than is the case for the ERPs.   
 
Fortunately, by virtue of having implemented a computational model that we can 
probe directly, an alternative and more direct method of generating frequency 
data was available to us.  This is because in the model, we are able to record the 
activation of individual units directly, instead of only having access waveforms 
aggregated over numerous neurons as when it is recorded from an electrode on 
the scalp.  That is, in the model, it is possible to directly record the activation of 
each unit and calculate the proportion of these units that fire at different rates.  
For this reason, we we employed this direct method for probing the response of 
the model in the frequency domain. 



 

 

 
Because model activation/frequency data are on an arbitrary scale, we link the 
model data to the behavioral data via qualitative inference between the two 
graphs --- for instance, that the lowest frequencies in the model should be linked 
to the lowest frequencies in the empirical data.   Different bin sizes for each 
“level” of frequency were also employed in additional simulations to ensure that 
the effects that we report are robust to this procedure --- hence, although we 
would not make a strong claim about a specific value of model frequency 
corresponding to a specific value of empirical frequency, we have established 
that lower frequency bins, regardless of how they are defined exactly, always 
show the effects observed empirically. 


