
Running head: SEMANTIC SETTLING DYNAMICS 1

Disparate semantic ambiguity effects from semantic processing dynamics rather than qualitative

task differences

Blair C. Armstrong*

Basque Center on Cognition, Brain, and Language

Paseo Mikeletegi 69, Floor 2, San Sebastian, Spain, 20009

blair.c.armstrong@gmail.com or b.armstrong@bcbl.eu; Phone: +34 943 309 300, Ext. 202

David C. Plaut

Department of Psychology and Center for the Neural Basis of Cognition

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, 15213

plaut@cmu.edu



SEMANTIC SETTLING DYNAMICS 2

Abstract

A core challenge in the semantic ambiguity literature is understanding why the number and

relatedness among a word’s interpretations are associated with different effects in different tasks.

An influential account (Hino, Pexman, & Lupker, 2006, JML) attributes these effects to

qualitative differences in the response system. We propose instead that these effects reflect

changes over time in settling dynamics within semantics. We evaluated the accounts using a

single task, lexical decision, thus holding the overall configuration of the response system

constant, and manipulated task difficulty—and the presumed amount of semantic processing—by

varying nonword wordlikeness and stimulus contrast. We observed that as latencies increased, the

effects generally (but not universally) shifted from those observed in standard lexical decision to

those typically observed in different tasks with longer latencies. These results highlight the

importance of settling dynamics in explaining many ambiguity effects, and of integrating theories

of semantic dynamics and response systems.

Keywords: semantic ambiguity; settling dynamics; connectionist models; decision making /

response selection
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Disparate semantic ambiguity effects from semantic processing dynamics rather than qualitative

task differences

Most words are semantically ambiguous, in that their interpretation depends on the context

in which they occur (Klein & Murphy, 2001). Developing a theory of ambiguous word

comprehension is therefore essential for a complete understanding of lexical and discourse

processing more generally, and it is no surprise that a vast literature has focused on semantic

ambiguity over the past several decades (e.g., Armstrong, Tokowicz, & Plaut, 2012; Armstrong,

Zugarramurdi, Cabana, Valle Lisboa, & Plaut, 2015; Azuma & Van Orden, 1997; Beretta,

Fiorentino, & Poeppel, 2005; Borowsky & Masson, 1996; Frazier & Rayner, 1990; Gernsbacher,

1984; Hino, Kusunose, & Lupker, 2010; Hino, Pexman, & Lupker, 2006; Jastrzembski, 1981;

Joordens & Besner, 1994; Klein & Murphy, 2001; Klepousniotou & Baum, 2007; Klepousniotou,

Pike, Steinhauer, & Gracco, 2012; Mirman, Strauss, Dixon, & Magnuson, 2010; Pexman &

Lupker, 1999; Rodd, Gaskell, & Marslen-Wilson, 2002; Rubenstein, Garfield, & Millikan, 1970).

Recently, theoretical accounts of semantic ambiguity resolution have faced two main

challenges. First, the relatedness of an ambiguous word’s interpretations, as well as the word’s

total number of interpretations, have been found to modulate semantic ambiguity effects. Thus,

relative to unambiguous controls, studies often report different patterns of effects for polysemes

which have multiple related interpretations (e.g., the <printer> and <academic> interpretations of

PAPER; hereafter denoted as <printer>/<academic> PAPER) than for homonyms which have

multiple unrelated interpretations (e.g., <river>/<money> BANK). Second, different effects of

number-of-interpretations and relatedness-of-interpretations have been reported between—and

sometimes within—tasks. For example, a number of visual lexical decision studies have found

that polysemous words are associated with a major processing advantage compared to

unambiguous controls, whereas homonyms are typically no different from unambiguous controls

or are associated with a weak disadvantage (e.g., Beretta et al., 2005; Klepousniotou & Baum,

2007; Klepousniotou, Titone, & Romero, 2008; Locker, Simpson, & Yates, 2003; Rodd et al.,

2002). In contrast, semantic categorizations that involve broad categories (e.g., does the presented
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word denote a LIVING THING? Hino et al., 2006) have found that homonymous words are

associated with a processing disadvantage relative to unambiguous controls, whereas there is no

difference between polysemes and unambiguous controls. Taken together, these complex and

apparently contradictory effects of number of interpretations and relatedness of interpretation

across tasks represent a major obstacle for advancing a theory of ambiguous word comprehension.

To address these challenges, Hino and colleagues (2006; see also Hino et al., 2010;

Pexman, Hino, & Lupker, 2004) proposed an account of a diverse set of semantic ambiguity

effects based on qualitative task differences and their consequences for the configuration of the

response system. On their account, a similar semantic representation is activated in all tasks.

Consequently, the inconsistent results obtained across tasks must be due to how the response

system is configured to select responses based on the same semantic representation. This account

is appealing for a number of reasons. First, in some restricted sets of circumstances at least, it is

clear that the locus of some inconsistent semantic ambiguity effects is in how the semantic

representations map onto the response system. This was well illustrated by Pexman et al. (2004),

who showed that a homonymy disadvantage in a semantic relatedness task was strongly

modulated by whether a homonym’s meanings all supported a particular response (e.g., all

meanings of PUPIL support a "no" response for “are HAWK-PUPIL related?”) or provided

partial support for two different responses (e.g., one interpretation of TIE supports a "yes"

response for “are SHIRT-TIE related?”). Second, this account essentially permits the explanation

of any semantic ambiguity effect observed in any task as resulting from a qualitative difference in

how the response system is configured. For instance, Hino et al. (2006) used this account to

explain why, they observed an overall advantage for homonymous words 1and polysemous words

relative to unambiguous controls in lexical decision, whereas in semantic categorization (is

BANK a LIVING THING?) only a homonymy disadvantage (or, in our classification scheme, a

hybrid disadvantage) was observed. Critically, in contrast to Pexman et al. (2004), the Hino et al.

experiments used a new set of word stimuli and eliminated response competition per se as an

explanation for their semantic categorization results by ensuring that all interpretations of the
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ambiguous words supported a single response (e.g., all interpretations referred to nonliving

things, such as for BANK).

It might seem, then, that an account based on the configuration of the decision system can

reconcile all of the apparently contradictory semantic ambiguity effects. However, a closer

consideration reveals that this account, at least in its current formulation, is unsatisfactory in a

number of respects. First, in its current abstract verbal form, it is unclear exactly how the response

system is configured to generate responses in a given task. Consequently, it is impossible to

evaluate whether the configuration process can, in fact, generate different configurations of the

response system that can fit the results observed in different tasks. It is also unclear how this

account can be used to generate predictions regarding effects that should emerge in new tasks.

Thus, the account is too flexible and post hoc, in that new experiments will always differ

qualitatively to some degree and therefore any new result can, in principle, be accommodated.

Second, the emphasis on a post-semantic process as an explanatory basis for semantic

ambiguity effects is inconsistent with the large body of neuroimaging data that point to a semantic

source for many of the observed effects—a source that includes, as a hub, the anterior temporal

lobes, although other regions may contribute to the semantic network, as well (e.g., Beretta et al.,

2005; Carreiras, Armstrong, Perea, & Frost, 2014; Kutas & Hillyard, 1980; Pylkkänen, Llinás, &

Murphy, 2006; Van Petten & Kutas, 1987). For example, Beretta et al. (2005) reported the results

of a magnetoencephalography (MEG) study that found a neural correlate of semantic processing,

the M350 component (the MEG analog to the N400 in the electroencephalography literature)

recapitulated the behavioral semantic ambiguity effects reported by Rodd et al. (2002). More

specifically, the neural correlates of semantic activity that they recorded suggested that relative to

unambiguous controls, homonym representations were activated more slowly; in contrast,

polyseme representations were activated more quickly. A simple and parsimonious account of the

behavioural results reported by Rodd et al. (2002), who reported similar effects in their

behavioural data, is therefore that the different patterns of semantic activity measured via MEG

carry forward to influence the speed of behavioural responses. The theoretical locus for
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explaining all ambiguity effects therefore need not be in the response system, but could,

alternatively, be a carry-over effect from semantic processing dynamics in and of itself.

Third, a core assumption of the account is that the response system plays a central role in

generating a range of ambiguity effects, and alternative accounts based on temporal processing

dynamics in semantics models may have been dismissed prematurely in favor of the decision

system account. Specifically, Hino and colleagues (2006) state that “[their] data, as well as those

reported by Pexman et al. (2004) and Forster (1999), suggest that ambiguity disadvantages in

semantic categorization and relatedness judgment tasks are likely not due to the semantic-coding

process as that process is conceptualized within PDP [parallel distributed processing] models (p.

266).” In contrast, our proposed account suggests that the processing dynamics within such

models do, in fact, explain the different patterns of semantic ambiguity effects reported in a

number of tasks, including many lexical decision and semantic categorization studies, as being

the direct consequence of such semantic dynamics. According to this account, the decision

system may require more or less evidence—and, by proxy, time—before generating responses in

different tasks, but the main reason why the ambiguity effects change as a result of increased

evidence/time is how semantic activity changes over time for different types of ambiguous words.

Without an explicit description of how their account could be extended to arbitrary tasks and also

be sensitive to temporal processing dynamics, the most straightforward predictions for that

account are, in our view, that similar semantic representations are tapped across tasks and

different patterns emerge only when the response system changes. However, this ignores

extensive computational and theoretical literatures showing that temporal processing dynamics

generate different amounts of semantic activation at different points in time2(Armstrong & Plaut,

2008; Joordens, Piercey, & Azarbehi, 2009; Plaut & Shallice, 1993; Simpson, 1994; see also

Kawamoto, 1993). Given that the various tasks that are associated with apparently inconsistent

ambiguity effects typically differ in overall latency (e.g., Hino et al., 2006; Rodd et al., 2002),

often by several hundred milliseconds, this opens the possibility that processing time, rather than

qualitative differences in the response system, may be the core principle that underlies the diverse
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set of reported ambiguity effects.

Building upon this theme, Armstrong and Plaut (2008) proposed the semantic settling

dynamics (SSD) account as an alternative to an account based on the response system (see also

Armstrong & Plaut, 2011, and the related accounts of Piercey & Joordens, 2000, and Rodd,

Gaskell, & Marslen-Wilson, 2004). We begin by sketching the main predictions and general

processing principles underlying the account, and elaborate on additional mechanistic detail later.

Additional supporting evidence is also provided in a simulation reported in Appendix A. The SSD

account predicts that different semantic ambiguity effects emerge at different points in time

during processing because of the temporal dynamics associated with cooperation and competition

between the semantic features of polysemous, homonymous, and unambiguous words. These

dynamics are further shaped by contextual constraint which allows for the selection of a

contextually appropriate semantic representation of an ambiguous word. However, consistent

with past findings (but not with explicit theories of staged contextual integration) the role of

context is assumed to be weak during early processing, so the early temporal dynamics are

relatively insensitive to context and the influence of context gradually builds up over time

(Swinney, 1979; Taler, Klepousniotou, & Phillips, 2009; Van Petten & Kutas, 1987).

Furthermore, to most clearly distinguish between an account based on semantic settling

dynamics from other accounts, such as one based on the configuration of the response system, we

make an initial simplifying assumption that this semantic activity is able to drive the response

system directly regardless of the task in question (e.g., lexical decision, semantic categorization).

This allows us to focus our predictions based on the activity in semantics only. This is not to say

that we claim that other representations do not also drive the response system to some degree as

well (e.g., orthography, phonology), that this semantic activity cannot feed back and interact with

other representations3or that the response system is not configured in different ways that could

also shape performance, as we noted previously.

Indeed, it may very well be the case that these other representations are the major sources of

evidence that drive the response system in some cases (e.g., lexical decision) and semantics
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makes only a minor contribution to this process. For simplicity, however, we are assuming that

ambiguous and unambiguous words do not differ in terms of these other representations, so that

we can test whether semantic ambiguity effects per se could emerge from semantic

representations directly. Related to the last point, this claim is intended to emphasize that,

provided that a task is carefully set up to avoid confounds involving these other systems (e.g.,

ambiguous words that partially support both possible responses in a task), the temporal dynamics

in semantic processing—that is, how much semantic processing has taken place when a response

is generated—are the primary source of many different semantic ambiguity effects. As a concrete

example, consider the case of lexical decision, which is the focus of the empirical work reported

here. Orthographic representations may provide a strong basis for making word versus nonword

decisions, but for simplicity we assume that orthographic representations are equally informative

for all types of ambiguous versus unambiguous words. Semantic activity, however, might differ

for polysemes, homonyms, and unambiguous controls and contribute to different patterns of

responses for these different word types (as shown in Figure 4 by vertical slices of the x-axis).

Such direct contributions from semantics are self-evident in the case of semantic tasks (e.g.,

semantic categorization), and prior modeling work has shown that semantics can be a reliable

basis for making lexical decisions, as well (e.g., Armstrong, Joordens, & Plaut, 2009; Plaut,

1997). After presenting our results, we discuss a more refined overall picture of how performance

is driven in lexical decision and how these semantic settling dynamics could be integrated with

more refined conceptualizations of processing in other systems (e.g., the response system).

With these general claims laid out, we now describe the representations and processes

assumed to underlie the different types of word stimuli. Polysemous words are assumed to share a

core set of semantic features across interpretations and to have some idiosyncratic features that do

not overlap across interpretations (Klepousniotou et al., 2008; Rodd et al., 2002; Williams, 1992),

homonyms are assumed to have multiple distinct and non-overlapping semantic representations,

and unambiguous words are assumed to have only a single semantic representation. For

simplicity, we assume, both in our verbal description here and in the simulations reported in
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Appendix A, that each semantic representation is equally semantically rich (i.e., it has the same

number of semantic features), in line with past semantic ambiguity research that counterbalances

items or controls for this confound during the subsequent analyses4(e.g., by including a measure

such as imageability or concreteness as a covariate as in the present work and Rodd et al., 2002).

In the case of polysemous words, all of the different semantic features can therefore cooperate to

activate the core semantic features shared across all interpretations of the word, which gives rise

to an initial processing advantage for polysemes relative to unambiguous controls. This advantage

is further exacerbated by the strong, numerous, and dense excitatory connectivity within a brain

region, as well as the fact that most between-region connections are excitatory-only, which cause

overall excitatory/cooperative dynamics to dominate during early processing. The polysemy

advantage would fade once the core features are strongly active and the idiosyncratic features

associated with each interpretation compete with one another (ultimately leading to a small

processing disadvantage for polysemes when extensive semantic processing has taken place).

Given that the polysemy advantage is being driven by an interaction between core features

shared across interpretations and idiosyncratic features that are distinct between interpretations, it

is also worth noting that the exact magnitude of the polysemy advantage and how long it persists

is also assumed to vary as a function of feature overlap. In more detail, we assume that

relatedness of interpretation is a continuous measure, ranging from no overlap—as is generally

assumed to be the case for homonyms, which activate non-overlapping features in different

contexts—to complete overlap—as is basically the case for unambiguous words, which activate

the same features in different contexts. Polysemes are a broad category that spans the area in

between. Insofar as a particular polyseme is extremely similar to an unambiguous word—that is,

there is almost perfect featural overlap across interpretations and almost no idiosyncratic

features—performance associated with that item should be similar to unambiguous controls. This

is because it has fewer total features to support the core interpretation, when feature counts are

summed across interpretations. At the opposite extreme, insofar as a particular polyseme shares

only a minimal number of features across interpretations and most features are uniquely
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associated with a particular interpretation, that polyseme should generate very similar

performance to homonyms. This is because even though many features can support the core

features, the small number of core features limits the total semantic activity that can build up as a

result of this processing advantage.

The optimal polysemy advantage described here will therefore occur for items with some

intermediate ratio of core and idiosyncratic features. The literature is in general agreement with

these claims, although more detailed empirical and computational work is needed to provide a

characterization of how this dynamic operates across the entire range of relatedness of

interpretations. For instance, Klepousniotou et al. (2008) have shown that polysemes with senses

that have high overlap but are nevertheless somewhat distinct and therefore not completely

unambiguous (e.g., metonymic polysemes such as <meat>/<animal> CHICKEN) show a stronger

advantage than polysemes with less featural overlap (e.g., metaphoric polysemes such as

<movie>/<celestial> STAR). In the modeling work we have conducted to date we have observed

that a significant polysemy advantage is detectable for polysemes with between 60-80% feature

overlap (as reported in Armstrong & Plaut, 2008, and in the Appendix). More work will be

needed, however, to determine exactly when the overlap is too high or too low to generate a

sufficiently large ambiguity advantage to be detectable in experimental settings, and relate that

overlap to empirical measures of relatedness. In particular, future work could help determine

whether there an as-yet unidentified subset of ambiguous words that are still classified as

(extremely low) overlap polysemes for which competition between the large number of

inconsistent features dominates cooperation among the consistent features—that is, are there

polysemes with extremely low featural overlap that behave like typical homonyms? Or, is the

amount of featural overlap that determines whether a lexographer classifies an item as polysemous

or homonymous in line with the amount of overlap needed to generate processing advantages and

disadvantages in our model? Before moving onto those more detailed points, however, we have

focused the present work on evaluating the basic validity of the central tenets of our account. 5

In contrast to polysemes, in the case of a homonym both interpretations would receive
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partial support during early processing from the surface form (i.e., orthography and/or

phonology). For instance, if the homonym had two interpretations, the semantic representation of

each interpretation would receive half as much support from the surface form as would be sent to

the semantic representation of an unambiguous word. Except for this consideration, the total

semantic activation of the homonym would initially build up in much the same way as the

activation of the single interpretation of an unambiguous word. More specifically, twice as many

semantic features should start to become active but because each interpretation receives half the

bottom up support, these two factors would basically cancel each other out, leading to no

difference between homonyms and unambiguous controls.6 As each of these interpretations

becomes increasingly active, competition between these inconsistent interpretations increases,

giving rise to a homonymy disadvantage relative to unambiguous controls. The initial relatively

weak competitive dynamic, which builds in strength over time, is attributable primarily to the

relatively sparse/weak inhibitory connectivity, as well as the absence of inhibitory connectivity

between brain regions, which result in relatively weak and late inhibitory effects.

Collectively then, the account predicts an early polysemy advantage, consistent with typical

lexical decision results, and a later homonymy disadvantage, consistent with semantic

categorization findings with broad categories (for a broader review of the empirical effects

consistent with the SSD account, seeArmstrong & Plaut, under review). It therefore has the

potential to provide a unifying framework for understanding a range of ambiguity effects. To

substantiate the SSD account, Armstrong and Plaut (2008) developed a connectionist model that

implemented the core assumptions outlined above. The simulation showed that, as predicted, a

polysemy advantage emerged during early processing, whereas a homonymy disadvantage

emerged during later processing. Moreover, it made the novel prediction that at an intermediate

time-point, both a polysemy advantage and a homonymy disadvantage should emerge, albeit to

weaker extents than during early and later processing, respectively.

In contrast to an account based on the configuration of the response system, the SSD

account makes clear predictions regarding the role that processing time, in and of itself, should
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play in modulating semantic ambiguity effects, holding task and the overall contributions of the

response system constant. In so doing, it presents temporal processing dynamics in semantics per

se, particularly as they are processed in parallel distributed processing models, as the mechanistic

basis for explaining a range of semantic ambiguity effects (cf. Hino et al., 2006, as discussed

earlier in the introduction). Specifically, the SSD account predicts that distinct patterns of

semantic ambiguity effects should be observed if responses within a single task are sped up or

slowed down. Although the predictions of the decision-system configuration account will remain

somewhat unclear until it is specified more formally, presumably it would predict that the same

semantic ambiguity effects should hold as long as the task itself remains constant; we will

elaborate on a more subtle, mechanistically-oriented view in the discussion. These contrasting

predictions are the motivation for the empirical study reported next.

Effects of Task Difficulty in Visual Lexical Decision

The current study was designed to test a key prediction of the SSD account: will variations

in the degree of semantic precision required to generate a response determine the pattern of

semantic ambiguity effects that are observed? We focused on early processing dynamics because

the main controversies in the literature deal with tasks that do not require contextual integration

and because changes in semantic effects as a function of processing time are well-established

during later context-sensitive processing (e.g., Seidenberg, Waters, Sanders, & Langer, 1984;

Swinney, 1979; Tabossi, 1988; for a review, see Simpson, 1994). Visual lexical decision was

selected as the target task because of its ubiquity in the study of semantic ambiguity. The

overarching logic of the study was to take a “standard” polysemy advantage in visual lexical

decision and, by increasing task difficulty and overall processing time, observe a weakened

polysemy advantage and the emergence of a homonymy disadvantage.

We elected to extend the experimental design employed by Rodd and colleagues (2002,

Experiment 2; see also Beretta et al., 2005) that yielded a polysemy advantage and no homonymy

disadvantage, with several improvements to the basic design and methods. These improvements
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were aimed at minimizing the likelihood of spurious confounds driving the results, and at

maximizing statistical power, given that the simulation predicted that at an intermediate

time-point, both the polysemy advantage and homonymy disadvantage would be weaker than at

either an earlier or a later time point, respectively. To do so, meaning frequency norms measuring

the relative meaning frequencies of the dominant and subordinate meanings of homonyms were

used to account for the different degrees of competition that should be generated depending on

whether a homonym has multiple interpretations that are encountered with roughly equal

frequencies or has a single strongly dominant interpretation (Armstrong, Tokowicz, & Plaut,

2012; for related computational principles, see McClelland & Rumelhart, 1981). In addition, a

large set experimental items were carefully matched across conditions using a stimulus

optimization algorithm (Armstrong, Watson, & Plaut, 2012). Finally, mixed-effects analyses were

employed to provide a powerful and unbiased assessment of generalization across both

participants and items, in contrast to running separate by participants and by items analysis and

not requiring that both tests are significant, and/or not requiring that the min-F′ statistic is also

significant (Barr, Levy, Scheepers, & Tily, 2013; Clark, 1973; Raaijmakers, Schrijnemakers, &

Gremmen, 1999).

The easiest condition in the experiment, which was nevertheless designed to be at least

moderately difficult, was expected to exhibit the standard polysemy advantage and lack of

homonymy disadvantage reported in many visual lexical decision studies. Relative to this, the

experiment investigated whether a homonymy disadvantage would be observed when difficulty

was increased by crossing two between-participant manipulations: three levels of nonword

difficulty (orthographically hard nonwords vs. orthographically very hard nonwords vs.

pseudohomophones) and two levels of stimulus contrast (“full” white-on-black text vs.

“degraded” gray-on-black text). In lexical decision, nonword wordlikeness is known to modulate

ambiguity effects (Azuma & Van Orden, 1997; Rodd et al., 2002), and reduced stimulus contrast

can slow responses by at least 100-150 ms (e.g., Borowsky & Besner, 1993).

To reduce overall speed-accuracy trade-offs between conditions, we provided feedback at
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the end of each block to encourage participants to either go faster even at the expense of more

mistakes or to try to be more accurate even if it meant responding more slowly, so as maintain an

overall accuracy of 90%. We predicted that this would facilitate the interpretation of the data by

encouraging differences to emerge in latency. However, because we provided feedback to

maintain overall accuracy levels below ceiling, it is also possible that between item-type

differences could emerge within a condition. We therefore tested to see if the predicted semantic

activity facilitated or impaired efficient responding, as could be reflected in accuracy and/or

latency.

Methods.

Participants. Students from the undergraduate participant pool at the University of

Pittsburgh participated in the experiment for course credit. Between 72 and 76 participants (447

participants in total) completed each of the six difficulty levels of the lexical decision task,

described in detail later, such that the manipulation of task difficulty occurred between

participants. All had normal or corrected to normal vision, were native English speakers, and gave

informed consent to participate. Students participated in only a single condition or associated

norming study. This between-participant manipulation of difficulty was employed to avoid order

effects that were observed in preliminary studies that varied difficulty within participants

(Armstrong, 2012). The study was approved by the Institutional Review Board of the University

of Pittsburgh.

Apparatus. The experiment was run in a dimly lit room on computers running E-prime

2.0.10.182 (Schneider, Eschman, & Zuccolotto, 2010). Participants responded on a standard

keyboard. Full-contrast items were presented as white text (162.9 cd/m2) on a black background

(0 cd/m2), whereas degraded stimuli were presented as dark gray text (1.9 cd/m2) on black

background. Contrast levels were selected in a pilot study so as to cause at least a 100 ms

slow-down in the hard nonword condition.

Stimuli and design. Word stimuli were selected to fill a 2 (meanings: one vs. many) x 2

(senses: few vs. many) factorial design analogous to that used by Rodd et al. (2002), although as
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noted before, we made the a priori decision to take meaning frequency into consideration during

the analyses.7 Meaning and sense counts were derived from the Wordsmyth dictionary, consistent

with past studies in this vein (e.g., Azuma & Van Orden, 1997; Beretta et al., 2005; Rodd et al.,

2002). For convenience, the one-meaning few-senses cell is referred to as the (relatively)

unambiguous condition, the many-meanings few-senses cell as the homonymous condition, the

one-meaning many-senses cell as the polysemous condition, and the many-meanings many-senses

cell as the hybrid condition. The SOS software package (Armstrong, Watson, & Plaut, 2012) was

used to find 100 quadruplets of experimental items (400 total), as well as 100 unambiguous filler

items for use during familiarization, practice and at the beginning of each block, which were not

analyzed. The quadruplets were minimally different from one another on a pair-wise level across

a number of factors that influence word recognition (see Table 1). This minimized the presence of

both group- and item-level confounds in the later analyses. The homonyms and hybrid items were

sampled from approximately 400 homonyms and 130 hybrid items that were identified as suitable

for standard psycholinguistic experiments and that were included in the eDom norms (Armstrong

et al., 2012). Given that the critical predictions concern homonym-unambiguous-polyseme

comparisons, and given the relatively small degrees of freedom available for selecting hybrid

items—approximately 75% of the population of such items in English were included in the

study—the constraints of the optimization were designed to prioritize matches between the three

conditions of primary interest.

Data on familiarity, imageability, and meaning frequency were not available for a

sufficiently large set of ambiguous items prior to stimulus selection, so these properties were

normed in a separate set of control experiments, with the intent of subsequently addressing any

issues with those metrics in the analyses. Note that this approach is feasible only if a large

number of items is available—for instance, this allows for approximately 80% of the items in the

study to be discarded and still have as many items left as in many studies (e.g., Hino et al., 2010;

Mirman et al., 2010), or for these measures to be controlled for when they are treated as

continuous variables in a regression, as was done in the analyses we report later. Normative data
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for familiarity and frequency were collected from approximately 40 different participants for each

measure. Standard norming methods similar to those reported by Hino et al. (2006) were

employed, in which participants rated these measures on a 7-point Likert scale. Relative meaning

frequency was normed by 50 participants and a measure of the frequency of the dominant

meaning of the homonym was used in the later analysis (for details, see Armstrong, Tokowicz, &

Plaut, 2012).

- - - - - - -

Insert Table 1 Here

- - - - - - -

Three different groups of 500 nonwords were generated (broken down into 400

"experimental" nonwords and 100 "filler" nonwords used during familiarization, practice, and

warm-up), each of which matched the distribution of lengths of the word stimuli. Two of these

groups were created by sampling from a pool of nonwords created by replacing one consonant in

a word sampled from the the SUBTL database (Brysbaert & New, 2009) with another consonant.

The hard nonword group consisted of nonwords with positional bigram frequencies that were

roughly matched to those of the word stimuli. The very hard nonword condition was created by

selecting the nonwords with the highest positional bigram frequencies in the pool. The third

group of nonwords consisted of pseudohomophones, which were included because of a report that

lexical decisions made in the context of this type of foil may be particularly likely to show

semantic ambiguity effects (Rodd et al., 2002), although there are theoretical reasons why our

other nonword foils could produce stronger semantic effects—a point we return to in the

discussion. The pseudohomophones were sampled from the ARC nonword database (Rastle,

Harrington, & Coltheart, 2002). This sample was restricted to contain only pseudohomophones
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with orthographically existing onsets and bodies and that only contained legal bigrams. These

items were rank ordered based on 1) orthographic Levenshtein distance, 2) orthographic

neighborhood size, and 3) positional bigram frequency. The most wordlike nonwords in this list

were selected, with the constraint that pseudo-plurals and pseudo-past tenses were largely avoided

to prevent participants from basing their responses on the last letter of the stimulus. Properties of

the nonword and word stimuli are presented in Table 2.

- - - - - - -

Insert Table 2 Here

- - - - - - -

Procedure. Participants were instructed to press the ‘z’ or ‘/’ key to indicate whether a

word or nonword was presented, and were provided with examples of each type of trial. Word

responses were always made with their dominant hand. To increase the sensitivity of the latency

data, avoid speed-accuracy trade-offs, and avoid ceiling effects in accuracy, participants were

instructed to respond as quickly as possible and were told that it was acceptable to make incorrect

responses up to 10% of the time. After each block, they were also presented with their latencies

and accuracies for that block and for the preceding one. If they made less than 10% errors, they

were instructed to “try to go faster even if it means making a few more mistakes”, otherwise they

were instructed to “try to be more accurate, even if it means slowing down a little.”

An initial block of 20 trials familiarized participants with the task, and was followed by a

100 trial warm-up block. Filler trials were used in both of these cases. Participants then

completed 8 experimental blocks of 110 trials each, which were seamlessly divided into 10

warm-up filler trials followed by 100 experimental trials. All blocks contained equal numbers of

words and nonwords and the order of the stimuli was randomized, with the constraint that there
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could be no more than 3 consecutive words or nonwords.

Each trial began with a 250 ms blank screen and a fixation stimulus (####+####)

presented for a random duration between 750 and 950 ms. This was followed by a 50 ms blank

screen, after which a word or nonword stimulus was presented for 4000 ms or until the participant

responded.

Results. Data were screened as follows prior to analysis: All words that at least 10% of

participants in the norming studies indicated they did not know, and all items with accuracies

below 50%, were dropped. This eliminated 11 words and 17 nonwords, distributed approximately

equally across the item types. One participant was also dropped for having a mean accuracy

below 50%. We view this portion of data screening as ensuring that only items that were correctly

classified by participants were included in subsequent analyses (i.e., the words were typically

known to participants, and the nonwords did not inadvertently contain words or colloquialisms

that were perceived as words), and that all participants followed the instructions and engaged in

the task to a minimum degree. This first phase of data screening eliminated 2.3% of the total data

(across all participants, all words, all nonwords). Next, participants’ overall performance and item

performance for each item type were separately screened for outliers in speed-accuracy space

using a Mahalanobis distance statistic and a p-value cut-off of .01 (Mahalanobis, 1936). This

eliminated no more than 3 participants per condition (14 total). No more than 4 words were

dropped from each of the word types (12 total), and no more than 18 nonwords were dropped for

each nonword type (46 total). This eliminated 6.3% of the total data, and minimizes the

likelihood that our effects are driven by particular items or participants (which we viewed as

particularly important if we were to attempt between-condition/between-participant contrasts).

Following this screening, trials with latencies lower than 200 ms or higher than 2000 ms, and trial

outliers within each block that exceeded the z-score associated with a two tailed p-value of .005

were removed for each participant (2.3% of the total data), leaving 89.1% of the total data.

Preliminary analyses on the full set of items that did not control for the effects of relative

meaning frequency (i.e., analyses that included only a two-level few vs. many meanings
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predictor) failed to find any significant homonymy effects. This was an expected outcome given

that, after norming, the bulk of our homonyms were found to have a strongly dominant

interpretation, and was one of the motivations for including a large number of items, so as to

address this issue in the analyses. Here, we report one set of analyses wherein the relative

frequency of the dominant interpretation of the homonym was used as the predictor for assessing

homonymy effects, instead of simply treating number of meanings as a two-level one vsṁany

factor that is insensitive to meaning frequency. In these analyses, polysemes and unambiguous

words were treated as words with a single completely dominant interpretation (dominant meaning

frequency = 100). That is, the effects of multiple unrelated meanings were not simply analyzed as

whether a word had one meaning or two or more meanings as a factorial manipulation. Rather,

we treated the effects of homonymy as varying from maximally strong in the case of items with

balanced meaning frequencies (dominant meaning frequency = 50 for items with two meanings)

and then gradually transitioning to being completely unambiguous (i.e., dominant meaning

frequencies of 100 for homonyms; recall that unambiguous words and polysemes were also

assigned dominant meaning frequencies of 100 given that they only have one meaning). Thus, a

significant effect of dominant meaning frequency also implies a significant effect of number of

unrelated meanings (i.e., homonymy) which is affected by meaning frequency.

Strictly for simplicity, the accuracy and correct latency plots (Figures 1 and 2) were

generated from the descriptive statistics from all of the unambiguous and polysemous items and

for the homonyms and hybrid items with balanced meaning frequencies. A word with multiple

meanings was considered to have balanced relative meaning frequencies if the dominant meaning

frequency was less than 65%. A total of 14 homonyms and 22 hybrid items satisfied this

constraint. However, note that the statistical analyses reported below involved the data from all of

the homonyms and hybrid items, with dominant meaning frequency factor included as a

continuous predictor.8 As quantified in the analysis, if the dominant meaning frequency increased,

the homonymy disadvantage decreased and homonyms and unambiguous words showed more

similar response patterns. This type of effect also implies an effect of number of unrelated
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meanings, which is modulated by meaning frequency. Significance tests and the summary of the

significant effects related to the homonyms and polysemes that are presented in the figures are

based on the regression models described below, which treat dominant meaning frequency as a

continuous variable and which include all of the data from all of the homonyms. In additional

analyses reported elsewhere, we observed similar results if, instead of using this regression

approach to control for relative meaning frequency and including the data from all of the hybrids

and homonyms, we dropped all of the unbalanced items and only analyzed a subset that contained

relatively balanced meaning frequencies and using a qualitative ‘one vsṁany‘ meanings factor

(for details, see Armstrong, 2012; Armstrong & Plaut, 2011; Armstrong, Tokowicz, & Plaut,

2012). Thus, the results we report are not contingent upon only this analytical approach.

All of the analyses were conducted using linear mixed-effect models in R (Baayen,

Davidson, & Bates, 2008; Bates, Maechler, Bolker, & Walker, 2014). Due to criticisms regarding

the lack of reporting of critical model details and the complexities that can often arise from this

type of modeling (Barr et al., 2013), a brief report of the most critical model details are described

here.9 To allow us to evaluate the core predictions of the SSD account, the models included

crossed random effects of participant and item and, as applicable given the subset of the data

being analyzed, fixed effects of dominant meaning frequency (i.e., a measure of homonymy that

is also sensitive to how competition could be modulated by meaning frequency), number of

senses (few vs. many), nonword difficulty, and contrast. Strictly to control for possible confounds,

the models also contained the psycholinguistic properties listed in Table 1, or some

transformation thereof.10 Additionally, the models included the trial rank, lexicality, accuracy,

and latency of the previous trial to eliminate auto-correlations that violate model assumptions (for

discussion, see Baayen & Milin, 2010; Barr et al., 2013; Bolker et al., 2009).

Because pilot analyses indicated that, as is often the case for complex models, specifying

the maximal random effects structure was not possible due to convergence issues (Barr et al.,

2013), we simplified the model so that only the variables related to the critical

manipulations—the nonword difficulty and contrast manipulations—were allowed to interact
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with the effects of meaning and sense, and only meaning and sense were included as nested

random slopes for each participant to maximize the accuracy of our inferences within a difficulty

manipulation. The correlation term between slope and intercept was not estimated to avoid

convergence issues. Accuracy was modeled with a binomial distribution (Quené & Van den

Bergh, 2008) and latency with a Gaussian distribution. In pilot omnibus analyses, positional

bigram frequency and imageability did not consistently predict significant amounts of variance

and so were dropped to facilitate convergence.

Because the most critical test of the SSD account relates to the presence, or lack thereof, of

a homonymy disadvantage (particularly for homonyms with relatively balanced meaning

frequencies) and of a polysemy advantage relative to unambiguous controls in visual lexical

decision, the bulk of the analyses reported here target those comparisons specifically.

Additionally, we report exploratory analyses of the hybrid items relative to the unambiguous

controls. These analyses are considered exploratory because whether the hybrid items will show a

processing advantage, disadvantage, or no difference relative to unambiguous controls will

depend on the degree to which cooperative or competitive dynamics dominate processing. For

instance, in the easier conditions, hybrids could show a greater processing advantage than

polysemes because they have more related senses; however, strong activation of these related

senses could be counteracted because these senses would compete across meanings more

strongly. Similarly, in harder conditions hybrid items could be associated with performance

similar to homonyms because of strong competition between meanings; or, the strong advantage

accumulated through cooperation may persist longer than in the case of polysemes and they could

still show a processing advantage even after the polysemy advantage has dissipated. The analysis

of the hybrid items may therefore provide constraints with respect to the relative strength of each

of these dynamics. Recall, however, that the original population of hybrid items precluded

controlling for the other psycholinguistic properties to the same degree as the other word types.

All significant effects have a p-value less than .05 and all marginal effects have a p-value less than

0.1, as calculated by appropriate functions in R (Kuznetsova, Brockhoff, & Christensen, 2014).
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Because the model specifically predicts the direction of the polysemy and homonymy effects,

those tests were one-tailed.

Accuracy. A summary of the accuracy data and the results of pairwise tests between the

unambiguous words and the homonyms and polysemes are presented in Figure 1. Overall, this

figure shows that average accuracy levels remained relatively constant across conditions and were

near the 90% accuracy threshold that was specified in the instructions and reinforced via

feedback. All of the conditions also showed that the hybrid words exhibited performance that was

quite similar to the polysemes, consistent with the results reported by Rodd et al. (2002). This

effect diminishes the informativeness of omnibus meaning × sense interactions because they do

not precisely test our predictions. For this reason, we focused our analyses on the critical pairwise

comparisons.

- - - - - - -

Insert Figure 1 Here

- - - - - - -

With respect to the homonyms, the SSD account predicts that, relative to standard lexical

decision performance in which homonyms tend to pattern like unambiguous words, more difficult

conditions associated with slower responses would generate a homonymy disadvantage. We

evaluated this hypothesis in two main sets of analyses. The first set consisted of

within-participants tests for a homonymy disadvantage within each difficulty condition separately

using relative meaning frequency as the predictor to make the test of homonymy sensitive to how

competition could be modulated by frequency. Thus, when we report a significant homonymy

advantage, it is implied that this homonymy disadvantage is shaded my relative meaning

frequency. The second set tested for an interaction between the magnitude of the homonymy
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disadvantage (again, shaded by meaning frequency) and difficulty in a mixed within-and-between

participants design spanning two difficulty levels.

We begin by reporting the results of the separate analyses of each condition. In the full

contrast–hard nonword condition, only a marginal homonymy disadvantage was observed relative

to the unambiguous words (b = 0.0046, SE = 0.0029, p = .055). This is consistent with the

standard finding of a weak or absent homonymy disadvantage in lexical decision. However, a

significant homonymy disadvantage was detected in all of the other conditions11 (very hard-full:

b = 0.014, SE = 0.004, p < .001; hard-degraded: b = 0.011, SE = 0.004, p = .002; very

hard-degraded: b = 0.014, SE = 0.004, p = .001; pseudohomophone-degraded: b = 0.012,

SE = 0.004, p = .005), except for the full contrast pseudohomophone condition, in which the

effect was marginal (b = 0.009, SE = 0.006, p = .07).

Next, we tested to see if the magnitude of the homonymy disadvantage increased as a

function of difficulty, as would be reflected in an interaction between homonymy and condition.

These tests were broken down into two subsets. In the first subset, the data were partitioned based

on stimulus contrast and within each partition the hard nonword condition was compared to the

very hard nonword and the pseudohomophone conditions. In the second subset, the data were

partitioned based on nonword difficulty and the full and degraded conditions were compared

separately for each level of nonword difficulty. All of these tests were non-significant (p’s ≥ .19),

and so are not reported in detail, with the exception of a significant increase in the homonymy

disadvantage between the hard to very hard conditions in the full contrast condition (b = 0.0070,

SE = 0.0038, p = .03). Note, that weaker effects were expected in these comparisons because

they involved a between-participant comparison.

We repeated a similar analytical protocol for the polysemes. According to the SSD account,

ideally the polysemes should show less or no advantage relative to unambiguous words,

depending on exactly how difficult the task is. We first tested for the presence of a polysemy

advantage within each condition. The polysemy advantage was significant in all of the full

contrast conditions (hard-full: b = 0.21, SE = 0.11, p = .024; very hard-full: b = 0.26,
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SE = 0.11, p < .01; pseudohomophone-full: b = 0.57, SE = 0.14, p < .001) but only for very

hard nonwords in the degraded condition (b = 0.37, SE = 0.11, p = .001; all other p’s ≥ .15).

Next, we tested to see if the magnitude of the polysemy advantage decreased as a function

of difficulty, as would be reflected in an interaction between number of senses and condition,

again, using the same partitioning approach described for the homonyms. The results showed that

the polysemy advantage decreased between the pseudohomophone-full contrast and

pseudohomophone-degraded contrast conditions (b =−0.30, SE = 0.12, p = .007). However,

The polysemy advantage increased between the hard-full and pseudohomophone-full contrast

conditions (b = 0.23, SE = 0.12, p = .02) and increased between the hard-degraded and

very-hard degraded conditions (b = 0.20, SE = 0.10, p = .03). All other comparisons were

non-significant (all p’s ≥ .13).

Finally, we explored how performance for the hybrid items compared to the unambiguous

controls. In this case, we did not make specific a priori predictions regarding whether an

advantage or a disadvantage would be observed, because either pattern could emerge depending

on the relative strength of the cooperative and competitive dynamics. The results of this

comparison can therefore serve to gain insight into the relative strength of each of these dynamics

at different points during processing. An examination of Figure 1 suggests that the hybrid items

tended to pattern more like the polysemes than with the homonyms. This is consistent with the

notion that the strong cooperative dynamics related to the shared features of the hybrid items are

dominating the overall processing dynamics. To evaluate this possibility quantitatively, we

contrasted the unambiguous controls and the hybrid items in regression analyses that included

main effects of homonymy (as assessed using relative meaning frequency as a predictor) and

number of senses. As before, one set of analyses was run separately for each condition and

another set of analyses compared performance across difficulty conditions. In the separate

analyses of each condition, the analyses never showed a significant effect of number of senses (all

p’s > .13). These analysis also only showed a significant effect of meaning frequency in the very

hard-full contrast condition (b =−0.012, SE = 0.006, p = .05) and in the pseudohomophone-full
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contrast condition (b =−0.017, SE = 0.007, p = .02). In both of those cases, however, the

relationship between meaning frequency and accuracy was the opposite of that observed for

homonyms—accuracy increased as the meaning frequencies became less balanced for the hybrid

items, whereas for the homonyms, accuracy decreased as the meaning frequencies became less

balanced. In the analyses testing for an interaction between difficulty and meaning frequency or

number of senses, only two of the interactions reached significance (all other p’s > 0.1). Both of

these exceptions were observed when comparing the hard nonword condition to the

pseudohomophone condition under full contrast. The first of these interactions indicated that

there was an increased disadvantage for hybrid items with more balanced meaning frequencies as

difficulty increased (b =−0.014, SE = 0.005, p = .01). The second of these interactions

indicated that there was an increased disadvantage for words with many senses as difficulty

increased (b =−0.35, SE = 0.14, p = .02).

Correct latency. Mean latency data from correct trials, as well as the results of pairwise

tests between unambiguous words and the homonyms and polysemes, are presented in Figure 2.

In general, these results show small increases in overall latencies as a function of nonword

difficulty, and substantial overall latency increases as a function of contrast. These effects are

more pronounced for the nonwords than for the words.12

- - - - - - -

Insert Figure 2 Here

- - - - - - -

The same analytical protocol used for the accuracy data was followed in analyzing the

latency data. With respect to the detection of homonymy effects within each condition, as was the

case for the accuracy data, there was only a marginal homonymy disadvantage in the full



SEMANTIC SETTLING DYNAMICS 26

contrast–hard nonword condition (b =−0.35, SE = 0.25, p = .09). However, there was a

significant homonymy disadvantage in all of the other conditions (very hard-full: b =−0.33,

SE = 0.17, p = .03; pseudohomophone-full: b =−0.56, SE = 1.9, p < .001; hard-degraded:

b =−0.49, SE = 0.17, p < .001; very hard-degraded: b =−0.45, SE = 0.20, p = .01;

pseudohomophone-degraded: b =−0.37, SE = 0.21, p = .04). In the between-condition tests for

interactions between homonomy and difficulty, no significant effects were detected, although

there was a marginal trend for a larger homonymy disadvantage in the degraded condition relative

to the full contrast condition in the context of hard nonwords (b =−0.21, SE = 0.16, p = .09), as

well as in the pseudohomophone condition relative to the hard nonword condition under full

contrast (b =−0.23, SE = 1.59, p = .08; all other p’s > .23).

With respect to polysemy, a significant advantage was detected in all of the

within-condition analyses (hard-full: b =−9.8, SE = 3.5, p = .002; very hard-full:

b =−11.5,SE = 3.5, p < .001; pseudohomophone-full: b =−12.2, SE = 4.4, p = .003; very

hard-degraded: b =−11.7, SE = 3.8, p < .001; pseudohomophone-degraded: b =−10.4,

SE = 4.4, p = .009), except the hard-degraded condition (p = .16). The tests for interactions

between the magnitude of the polysemy advantage and difficulty indicated that the polysemy

advantage marginally decreased between the full contrast and degraded contrast condition in the

context of hard nonwords (b = 4.9, SE = 2.9, p = .05), and significantly increased between the

hard and very hard nonwords under degraded contrast (b =−7.6, SE = 3.3, p = .01). All of the

other comparisons were non-significant (p’s ≥ .13).

Finally, we explored how the hybrid items patterned relative to the unambiguous controls.

As in the accuracy data, an examination of Figure 2 showed that latencies for the hybrid items

tended to group more with the polysemes than with the homonyms. In identical statistical

analyses to those conducted on the accuracy data, which compared the hybrid items and the

unambiguous controls, the within-condition analyses indicated that in no case was the effect of

meaning frequency significant (all p’s > .35), nor was the effect of number of senses (all p’s

> .20). The tests for interactions between conditions revealed a marginal effect of meaning
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frequency, such that hybrid items with more balanced meaning frequencies were responded to

marginally more slowly in the pseudohomophone condition than in the hard nonword condition

when stimuli were presented at full contrast (b = 0.35, SE = 0.18, p = .053; all other p’s ≥0.14).

Summary of results. The within-condition analyses were largely consistent with the

predictions of the SSD account. With respect to the homonyms, in the easiest condition

(hard-full) which serves as our baseline, no homonymy disadvantage was detected in either

accuracy or latency, although there were marginal trends in that direction. However, a significant

homonymy disadvantage was detected in the harder difficulty conditions. This disadvantage was

always significant in the latency analyses, and significant in all but the pseudohomophone-full

condition in the accuracy analyses. With respect to the polysemes, there was a significant

polysemy advantage in both accuracy and latency. This advantage remained significant in all of

the full contrast conditions, which were also associated with small increases in overall latency

relative to the baseline condition. In the degraded contrast conditions, in which latencies were

considerably longer, however, the latency analyses only showed evidence for a polysemy

advantage in the case of pseudohomophones and very hard nonwords, and the accuracy data only

showed evidence for a polysemy advantage in the case of very hard nonwords. Thus, the

polysemy advantage appears to have dissipated somewhat as difficulty increased.

The between-condition analyses rarely reached significance, which is at least partially due

to the between-participants nature of the comparisons. Nevertheless, with respect to the

homonyms, when effects were detected they showed that the homonymy disadvantage increased

as difficulty increased. This increase was significant in between hard and very hard nonwords

under full contrast in accuracy, and was marginal in the latency data between the degraded

contrast and full contrast conditions involving hard nonwords, as well as between the

pseudohomophone and hard nonword conditions under full contrast. In the case of the polysemes,

the effects were also rarely significant and the effects that were detected were somewhat mixed.

The polysemy advantage significantly decreased between the pseudohomophone-full and

pseudohomophone-degraded conditions in accuracy, and marginally decreased between the
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hard-full and hard-degraded conditions in latency. However, the polysemy advantage significantly

increased between the hard-full and pseudohomophone-full conditions and the hard-degraded and

very hard-degraded conditions in accuracy, as well as between the hard-degraded and very

hard-degraded conditions in latency. Finally, in general, the hybrid items performed more

similarly to the polysemes than to the homonyms.

Discussion

The SSD account predicts that varying processing time—and the amount of semantic

settling that has taken place—should give rise to different ambiguity effects, even when the task

and the basic configuration of the response system are held constant. The experiment provided an

empirical platform for evaluating the specific predictions of the account regarding the timecourse

of semantic settling via two manipulations of task difficulty. The results of the experiment showed

that stimulus degradation substantially increased overall latencies and nonword difficulty slightly

increased overall latencies. These latency increases were also generally associated with the

emergence of a homonymy disadvantage and a reduced sense advantage, particularly in the case

the contrast manipulation, as shown in the within-condition analyses. The results of the

experiment are thus broadly consistent with the specific predictions of the SSD account with

respect to the detection of a weak or absent homonymy disadvantage in standard (relatively)

easy/fast lexical decision, which becomes stronger in harder/slower difficulty conditions; and with

a strong polysemy advantage in standard lexical decision which becomes weaker or disappears in

harder/slower difficulty conditions.

The results also call into question the need to attribute the different ambiguity effects that

have been observed in different tasks to qualitative differences in the configuration of the

response system (Hino et al., 2006) without denying that some adaptation of the response system

could occur. In that study, the authors reported no ambiguity effects in their fastest experiments,

which concerned semantic categorizations related to narrow categories (Experiment 3,

unambiguous control latencies: 566 ms; filler ‘no’ response latencies: 583 ms, average: = 575 ms;
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Experiment 4, unambiguous control latencies: 559 ms; filler ‘no’ response latencies: 542 ms;

average: 551 ms). In their slightly slower experiment, lexical decision, they reported an advantage

for hybrids and polysemes (Experiment 1, unambiguous controls: 563 ms; filler nonword ‘no’

responses: 614 ms; average = 575 ms). In their slowest conditions, which concerned semantic

categorizations related to broad categories, they only observed a hybrid disadvantage (semantic

categorizations with response latencies in the 650-800 ms range). Taking only the mean response

latencies from that article into account13, these data are in line with the overall predictions of the

SSD account: If responses are made very early, before semantic activity has built up to a level that

is substantial enough for the effects of within-semantic cooperative dynamics to build up, no

ambiguity effects are predicted. Shortly thereafter, an advantage is predicted for polysemes, and

could also manifest itself for hybrid items if the cooperative dynamics are still the only major

force at play. Much later, the polysemy advantage would disappear as the unambiguous word

activity increases and as competition between the idiosyncratic features increases.14At that point,

after competition has dominated for an extended period of time, only a disadvantage for

homonyms and hybrid items should remain.

Of course, there are some potential issues with this interpretation which remain to be

fleshed out. For example, this account assumes that the very fast semantic categorizations could

be made based on a minimal amount of semantic activation, prior to the onset of strong

cooperative dynamics, whereas the lexical decision results would have been influenced by slightly

later semantic dynamics. This may, superficially, be an unusual prediction, but it is one that could

be evaluated empirically by comparing the magnitude of other semantic effects (e.g.,

imageability, concreteness) across tasks and conditions. These patterns also raise questions about

why our within-task manipulations were less effective at altering the overall patterns of results, a

point which we elaborate on below. Furthermore, additional work will be needed to help

constrain the exact patterning of hybrid items over time to validate the assumed temporal settling

dynamics for this understudied set of items, although as we noted in the methods, the relatively

small population of such items makes doing so with tightly-controlled sets of items difficult.
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Setting these considerations aside, there are, however, also several general issues with the

interpretation of the Hino et al. (2006) data that remain to be sorted out in detail as well. For

instance, why is it that some semantic categorization responses, the fact that they involved narrow

categories notwithstanding, could be made more quickly than lexical decisions, which at most,

requires an evaluation of whether a stimulus evokes any coherent meaning whatsoever? One

possibility is that participants are responding much more slowly than necessary in both tasks, as

has been reported previously (for discussion, see Plaut & Booth, 2000). It would also permit a

relatively early advantage for basic category information to emerge from the temporal processing

in semantics (Rogers & Patterson, 2007). Such a basic category advantage could facilitate

responding in semantic categorization tasks related to narrow categories. In principle, these issues

could be examined by using methods that encourage participants to respond more efficiently (i.e.,

more quickly, without sacrificing accuracy), and this past work offers some possibilities on that

front. The present results also suggest that comparisons between experiments that also involve

different participants, as was the case in the Hino et al. studies, may be more noisy and

underpowered. Thus, strong claims regarding between-experiment differences in mean latency,

which were relatively small between the lexical decision and semantic categorization tasks

involving narrow categories, should be interpreted with caution (and more caution still is needed

in comparing our absolute latencies with theirs).

More broadly, the results of our experiment also challenge some basic assumptions about

how lexical processing unfolds and is tapped by the response system in different contexts. For

instance, staged models of written word comprehension (e.g., Borowsky & Besner, 1993, 2006)

predict that stimulus degradation would extend visual/orthographic processing but not alter the

amount of semantic processing that has taken place (for related work, see Yap, Lim, & Pexman,

2015). Interpreted within the context of the SSD account, our results suggest that the majority of

the slow-down that has occurred in processing the degraded items occurred outside of semantics,

given that the large latency increases following stimulus degradation were associated primarily

with only small modulations in the semantic ambiguity effects relative to other tasks such as
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semantic categorization, which are associated with similar overall latencies (Hino et al., 2006).

Nevertheless, our observation of modulation of ambiguity effects as a function of stimulus

contrast challenge such an model and support a (possibly weakly and somewhat stage-like)

cascaded theory of lexical processing. Although such a result might be argued to imply that

information does not flow quite as strongly between levels of representations as implied in classic

models(e.g., McClelland & Rumelhart, 1981), these results are nevertheless more in keeping with

standard processing assumptions in neural/connectionist networks and run contrary to the

predictions of a formal staged account (for related discussion, see Plaut & Booth, 2000; see also

the discussion of temporal modularity in Carreiras et al., 2014). According to such a mechanistic

account of our results, a large part (but not all) of our slow-down due to stimulus contrast would

be attributable to slower early visual/orthographic processing as well, prior to the onset of

semantic processing. This would also help explain why the modulation of our semantic effects,

holding task constant and manipulating stimulus contrast, led to smaller changes in the overall

pattern of semantic effects than a qualitative alteration of the task itself which has yielded similar

overall increases in latencies (on the order of 100 ms, e.g., Hino, Lupker, & Pexman, 2002).

Across those tasks, perceptual-to-semantic access should occur at the same rate, so the entire >

100 ms latency increase could be allowing for different semantic effects to emerge. In our

experiment, however, a substantial portion of this latency increase is likely attributable to slower

processing that is largely restricted to pre-semantic representations. Thus, our > 100 ms increases

in overall latencies following the stimulus contrast manipulations should be associated with much

smaller increases in the total amount of semantic processing in particular. Our stimulus contrast

manipulation should therefore produce a weaker overall modulation of the semantic effects,

despite similar overall increases in latency as in some previous between-task manipulations,

which is what we observed.

Other manipulations, such as the use of pseudohomophone foils, were less effective than

the literature might suggest. Explaining these results raises an interesting set of computational

questions. In particular, the pseudohomophones were also associated with the largest increase in
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both word and nonword latencies but did not produce semantic effects consistent with more

resolved semantic representations. Both of these effects are difficult to reconcile with an account

based strictly on semantic settling dynamics but would fall out naturally from an account that

involved the response selection system. Indeed, because pseudohomophones are able to engage

specific semantic representations via phonology, the response system may learn to de-emphasize

(although not eliminate) evidence from semantics because it is less informative in separating

words from nonwords. Thus, the longer latencies in that condition may, in fact, be due to the

response system needing to wait for additional non-semantic information, such as precise

orthographic information, to be resolved (Hino & Lupker, 1996). A similar principle may

underlie the results reported by Hino et al. (2010), in which Kanji nonwords composed of

characters with meanings similar to the words weakened some ambiguity effects despite

increasing overall latencies. Our other types of nonwords, which were highly wordlike in terms of

bigram frequency and neighborhood size but that were less likely to engage a specific semantic

representation, may therefore be better suited for eliciting strong semantic ambiguity effects.

This raises important questions for future research regarding the optimal types of nonwords

that should be used to elicit powerful semantic (or, in other circumstances, non-semantic) effects

using a lexical decision paradigm. It is well established that nonwords that are not very wordlike

in terms of their surface features (e.g., illegal consonant strings, nonwords with very low bigram

frequencies or small neighborhoods) are typically associated with small or no semantic effects

and very fast overall latencies 15(and neural correlates of semantic activity) (e.g., Azuma &

Van Orden, 1997; Evans, Ralph, & Woollams, 2012; Laszlo & Federmeier, 2011; Pexman &

Lupker, 1999; Rodd et al., 2002)). From that lower bound, however, our results suggest that

different properties of the nonwords can be adjusted to increase overall wordlikeness in ways that

either emphasize or de-emphasize semantic contributions. Nonwords that are very wordlike in

terms of their surface properties (legal bigrams, high bigram frequencies, large neighborhood

sizes) minimize surface-level distinctions between words and nonwords in terms of, for instance,

orthographic representations. These items do not, however, engage specific semantic
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representations, leaving the state of semantics as a strong indicator of whether a presented item

was a word or a nonword. In contrast, pseudohomophones, for the reasons outlined above, will

engage specific semantic representations via phonology, reducing (although not eliminating, due

to inconsistencies in the orthographic-semantic mapping) the informativeness of differences in

semantic activity relative to other sources of evidence (e.g., engagement of specific,

previously-learned orthographic representations) in delineating between words and nonwords.

Thus, even if pseudohomophones are more wordlike overall than our orthographically very

wordlike nonwords (and lead to larger increases in overall latencies), leading to stronger semantic

effects than nonwords that are not very wordlike, they may be less optimal for causing semantic

factors to drive responding, as was desired in this particular investigation.

Nevertheless, even our other types of nonwords are not the perfect means of increasing

overall latencies and semantic effects that we sought because increasing nonword difficulty had a

markedly larger effect on nonword latencies than word latencies. Thus, although we set out with

the aim of varying response times holding task constant and did observe effects consistent with

the predictions of the SSD account, this evidence for response-specific slowing suggests the need

for more integrative theories and explicit models that flesh out the specific contributions of the

lexical system (including how orthographic, phonological, and semantic representations interact)

and the response system to fully understand our and other researchers’ results (for discussion, see

Armstrong et al., 2009; Armstrong & Plaut, 2013). This is a massive undertaking, but is likely

needed to fully explain all of the nuances we have observed and that have been reported elsewhere

in the literature.

The tendency for the hybrid items to pattern like the polysemous items also provides

interesting insight and constraint for the SSD theory, while at the same time agreeing with the

results of the lexical decision study reported by Hino et al. (2006) if their homonymous items are

re-interpreted as being hybrid ambiguous items, as discussed in the introduction (a similar

explanation might also apply to the overall ambiguity advantage reported by Pexman et al. (2004)

if their high Number of Meaning items were hybrid items and not pure homonyms). Indeed, such
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a re-interpretation offers a means of understanding why, in several papers by that research group,

an overall ambiguity advantage is reported in lexical decision (Hino et al., 2006; Pexman et al.,

2004), which may be driven by a combined polyseme/hybrid advantage; whereas in many other

studies, the advantage is restricted to polysemes and homonyms are associated with a processing

disadvantage or no difference from unambiguous controls (e.g., Armstrong & Plaut, 2008; Beretta

et al., 2005; Klepousniotou et al., 2008; Rodd et al., 2002). It is also consistent with the

re-analyses of the English Lexicon Project data reported by Armstrong, Tokowicz, and Plaut

(2012). In contrast to a previous re-analysis of a smaller set of homonyms by Hargreaves,

Pexman, Pittman, and Goodyear (2011), who reported a homonymy advantage (although they did

not distinguish between homonym and hybrid items as we do here), Armstrong and colleagues

found at best very weak evidence for a homonymy advantage specifically. In particular, they

failed to replicate a significant ambiguity advantage when the data for 397 (non-hybrid)

homonyms with relatively few senses were re-analyzed (nearly an order of magnitude more

homonyms than are used in standard behavioral studies) and included standard psycholinguistic

variables (e.g., frequency, length) as covariates. Translating these results into slightly more

mechanistic terms, these data suggest that, even during (somewhat) later processing,

cooperative/excitatory dynamics can still dominate competitive/inhibitory dynamics, which may

relate to and provided added justification for building more biologically plausible models,

particularly with respect to excitatory and inhibitory dynamics (e.g., Laszlo & Armstrong, 2014;

Laszlo & Plaut, 2012). Or, alternatively, they could indicate a potential weakness of the settling

dynamics account. Before making strong claims in this regard, additional normative data related

to the number and frequency of exposure to each interpretation of a hybrid item is needed to

better understand how absolute interpretation frequency, relative meaning frequency, and the

number and relatedness of a word’s semantic features interact—particularly given that in a couple

of occasions the effects of number of interpretations and relatedness of interpretations were

inconsistent with those typically associated with homonymy and polysemy both in our other

conditions and in other studies. More targeted experiments of this understudied type of item that
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involve more optimally matched sets of hybrid items may be especially informative in fleshing

out these effects—especially if conducted in other languages in which the pool of such items is

greater. These experiments, if coupled with more powerful manipulations of how much semantic

processing takes place between conditions (such as those outlined earlier in the discussion) could

also help establish how cooperative and competitive dynamics trade off for polysemous and

hybrid items when very precise semantic codes are engaged (beyond those we believe to have

tapped in our current investigations of within-task manipulations).

Taken together, the present results call for a refinement and a tighter integration of both

theories of lexical processing and theories of response selection, over and above the descriptions

that we offered in the introduction. Although the SSD account was originally developed as a

direct alternative to an account based on qualitative differences in how decisions are made across

tasks—and maintaining the present claim that semantic settling dynamics explain a large portion

of the observed literature—it is clearly an oversimplification to ignore the contributions of the

response system in determining how and why a response is made. The development of such an

integrative account would not only allow for more direct contrasts of where the relevant dynamics

that underlie a given empirical phenomenon are occurring, but also for a more compelling

understanding of these systems as an interactive network. For instance, it remains to be

formalized in explicit computational terms how it is determined when sufficient

information—semantic or otherwise—has been accumulated to reliably make a response in a

given task—or indeed, within different conditions of a single task, as in the study reported here.

Presenting a more comprehensive model of specific tasks that includes both a lexical system

and a response system is not a trivial undertaking, however, given the contention surrounding how

the response system should be integrated with the lower-level systems that provide evidence to it,

how the response system learns to monitor different types of evidence as a function of experience

with a given task, and how evidence that accumulates in different representation (e.g.,

orthography, semantics) at different rates should drive the response system (for discussion, see

Armstrong & Plaut, 2013; Ratcliff, 1980; Ratcliff, Van Zandt, & McKoon, 1999; Usher &
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McClelland, 2001). The empirical data, and in particular, performance in the pseudohomophone

condition, also suggest that semantics, the response system, and other representations such as

orthography and phonology interact in highly complex ways that involve different contributions

from cooperative and competitive dynamics over time. More sophisticated modeling involving a

full orthographic-phonological-semantic lexical processing model and the response system will

clearly be needed to fully understand these data.

Finally, it must be acknowledged that, although the within-condition analyses were

generally supportive of the predictions of the SSD account, there is some weakness in the

empirical support for these conclusions: the predicted between-condition interactions often did

not reach significance, and the polysemy effects appeared to be less modulated by the difficulty

manipulations than the homonymy effects. Thus, although our results generally support the SSD

account and undermine a strong account of the data based on a qualitative difference in the

response system across tasks (given that overall task was held constant), our results, at face value,

would not appear to be perfectly consistent with the SSD account, either. These not perfectly

consistent findings may be due to several factors, all of which have both theoretical and

methodological implications for future studies of semantic ambiguity. First, our easiest condition

itself may, nevertheless, have been a relatively difficult version of lexical decision, falling near the

border between the standard pattern of effects observed in lexical decision (strong polysemy

advantage, weak or absent homonymy disadvantage) and the “late” semantic effects that we

predicted in more difficult conditions. By moving the baseline condition closer to the more

difficult conditions, the detection of strong interactions between different difficulty conditions

may have been reduced. Second, the detection of these interactions was clearly more difficult

because of the between-participants nature of the comparison, which was motivated by pilot

studies that showed strong order effects depending on which difficulty level participants were

exposed to first, as well as a general homogenization of performance across difficulty levels.

Third, based on our analyses of items used in prior semantic ambiguity studies that did not

explicitly control for meaning frequency (e.g., Beretta et al., 2005; Rodd et al., 2002), we
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expected that the number of relatively balanced homonyms would be somewhat larger in our

sample, which would have increased the power and reliability of the homonymy effects. Finally,

there may be an upper limit on how much lexical decision can be made to rely on higher-level

semantic representations in driving the response system. Although semantic activation clearly

contributes evidence that can discriminate between words and nonwords (see also Plaut, 1997),

orthographic and phonological representations can obviously be used as a source of evidence to

discriminate words from nonwords, as well. In visual lexical decisions, orthographic

representations also benefit from receiving feedforward activation from the sensory system first

and from needing to be resolved to a sufficiently precise degree to activate a relatively precise

semantic representation. Collectively, this could allow for the accumulation of sufficiently

discriminating non-semantic information to make lexical decisions before a reasonably strong

amount of semantic activity, such as that expected to underlie a strong homonymy disadvantage in

the absence of a polysemy advantage, can accumulate.

With these considerations in mind, several specific guidelines can be derived for future

investigations. First, the results of the present work clearly illustrate the importance of carefully

controlling for meaning frequency to maximize the magnitude of homonymy effects. The recent

availability of large-scale norms of meaning frequency should make such careful control possible

(Armstrong, Tokowicz, & Plaut, 2012; Armstrong et al., 2015), particularly when complemented

by stimulus selection methods that control for many psycholinguistic properties on an item level

(Armstrong, Watson, & Plaut, 2012). Second, it may be desirable to explore even more extreme

difficulty manipulations that compare very easy versions of a given task (e.g., lexical decision

with nonwords that are not very wordlike) with the current difficult version of lexical decision to

boost the power of the ambiguity by difficulty interactions. Third, it is clearly desirable, in an

ideal world, to hold not only items but also participants constant in comparing different ambiguity

effects within a given task, particularly if there are some upper and lower limits on how easy or

hard a given task can be. We originally ran a pilot version of the difficulty manipulation which

showed strong order effects and homogenization of overall performance across different difficulty
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levels, which motivated our current between-participants design. However, in recent work,

Armstrong, Barrio Abad, and Samuel (2014) showed that having participants complete multiple

(~14) alternating blocks of different versions of an auditory versus visual task was able to

minimize those issues and show significant interactions between task and a semantic

variable—imageability—in mixed-effect regression analyses. Balancing holding items and

participants constant using this type of design may therefore be a powerful general strategy for

comparing different difficulty manipulations in experimental settings.

Relatedly, in post hoc analyses of the Armstrong et al. (2014) data set, which was found to

contain similar numbers of homonyms and polysemes to many prior studies (e.g., Hino et al.,

2010; Mirman et al., 2010), we were able to detect several significant interactions between

number of meanings, number of senses, and modality of stimulus presentation, which also

correlated with overall latency of responses—auditory lexical decisions were made approximately

300 ms slower than visual lexical decisions, and were associated with stronger homonymy effects

and weaker polysemy effects. Although future experimental work with the a priori aim of fleshing

out ambiguity effects in particular is clearly needed within this paradigm, these results parallel

those observed by Rodd et al. (2002) in their auditory and visual lexical decision experiments,

respectively. Specifically, using the unambiguous control, homonym, and polyseme nomenclature

adopted in the present work, for visual lexical decision (Experiment 2) Rodd and colleagues

reported unambiguous control latencies of 586 ms, homonym latencies of 587 ms, and polyseme

latencies of 567 ms. There was therefore a 19 ms polyseme advantage and a 1 ms homonymy

disadvantage. In comparison, in auditory lexical decision (Experiment 3) they reported

unambiguous control latencies of 939 ms, homonym latencies of 986 ms, and polyseme latencies

of 924 ms. There was therefore a 15 ms advantage for polysemes and a 47 ms disadvantage for

homonyms. Numerically at least, these effects are in line with our predictions. The homonym

disadvantage in particular is likely to be significantly larger in auditory lexical decision, and at the

very least, these data provide no support for an increased polysemy advantage. Collectively, these

findings further reinforce the notion that investigations of other tasks may be useful for building a
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convergent set of evidence for the SSD account (see also Mirman et al., 2010). Interestingly, one

of the reasons why such clear comparisons cannot be made using the data reported by Rodd and

colleagues is that non-identical sets of items were used in their auditory versus visual

experiments. The use of these only partially overlapping sets was clearly necessary in that work

because—among other reasons—the orthographic and phonological neighborhoods of English

words can be quite different from one another and a well controlled set of items for a visual

experiment may include substantial confounds if used in an auditory experiment. These problems,

however, can be minimized if, like in the Armstrong et al. (2014) study, a transparent language

such as Spanish is used. Additionally, given that some of the inconsistent results obtained in

lexical decision have been reported in different languages (e.g., Hino et al., 2010), it is clearly

valuable to assess the generality of the different ambiguity effects across languages and avoid

developing general theories of ambiguous word comprehension that may, in fact, be tied to

specific properties of a given language (for discussion, see Lerner, Armstrong, & Frost, 2014;

Share, 2008; Frost, 2012). Insofar as these findings can be replicated in tightly controlled

experimental settings, this would have critical implications and motivate new computational work

studying the timecourse with which information flows not only within semantics, but within and

between orthography and phonology as well.

More broadly, it may also be worth considering how other types of tasks can be used to

explore the timecourse of semantic ambiguity effects. Two avenues that appear particularly

worthy of investigation are contrasting go versus no-go versions of a task and tasks with explicit

response deadline requirements. In both cases, such investigations would essentially explore how

explicitly altering when a participant responds alters performance without modifying other core

aspects of the task. With respect to go/no-go tasks, Siakaluk, Pexman, Sears, and Owen (2007)

has previously shown that homophone effects are modulated by this manipulation in the context

of semantic categorization. Considered in conjunction with the explicit computational modeling

of yes/no lexical decision and go/no go lexical decision (Perea, Rosa, & Gómez, 2002), these

results lend credibility to the notion that semantic ambiguity effects could be manipulated in this
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type of task and that the main difference between the conditions would be how much evidence

accumulates before responding (see also Tamminen, Cleland, Quinlan, & Gaskell, 2006).

Similarly, Rogers and Patterson (2007) have reported effects consistent with the earlier versus

later semantic settling dynamics of a connectionist model of semantic memory in a semantic

categorization task with explicit deadline requirements, although other models and data raise

questions as to how general and reliable such explicit deadline methods are for tapping earlier

processing dynamics versus simply speeding up the dynamics themselves 16 (Kello & Plaut,

2000, 2003). Again, studies in other languages than English, such as Japanese (e.g., Hino et al.,

2006), may be particularly valuable to this end, because the relatively small number of homonyms

in English makes selecting large groups of well controlled homonyms difficult (but not

necessarily impossible; Hargreaves et al., 2011). In these and other possible investigations, it

would also be desirable to collect convergent measures of neural correlates of processing as well

to gain additional insight into the involvement of brain regions involved in semantic processing

and response selection at different points in time (e.g., Beretta et al., 2005; Hargreaves et al.,

2011; Pylkkänen et al., 2006; Taler et al., 2009).

Conclusion

The SSD account represents a novel alternative to accounts of semantic ambiguity effects

based on the configuration of the decision system. Although this account is clearly still in its

infancy, by being based in the domain-general principles of the connectionist

framework—particularly with respect to how cooperative and competitive dynamics unfold over

time—it holds considerable promise in providing a comprehensive account of semantic ambiguity

effects, as well as connecting with a broad set of phenomena in other related domains, such as the

temporal dynamics associated with orthographic and phonological processing. In the current

work, we tested several of the core predictions of the account and found effects that were

largely—albeit, not perfectly—consistent with its predictions. The results also help motivate

several refinements to the theory—including the importance of integrating lexical processing with
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a response system to understand and simulate in explicit computational terms how these effects

emerge in specific tasks. The findings also help to identify a number of targeted methodological

improvements and related tasks that can be used to further inform theories of semantic ambiguity

resolution. The SSD account should thus continue to make valuable contributions to our

understanding of these issues and other related issues in future work as it matures.
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Footnotes

1The definitions of homonymy and polysemy differ depending on where a given group of researchers draws the line

between items that are (relatively) unambiguous, purely homonymous purely polysemous, or ‘hybrid’ items that are

both homonymous and polysemous. Thus, other researchers might classify the ‘homonymous’ words in the Hino et al.

(2006) study as being closer to ‘hybrid’ ambiguous items than pure homonyms (e.g., Armstrong & Plaut, 2008; Beretta

et al., 2005; Rodd et al., 2002). A similar re-labeling might also be applicable to the high Number of Meaning items

in Pexman et al. (2004), although we cannot make strong claims either way because detailed counts of meanings and

senses were not reported in that paper. Comparisons between item types reported by different research groups should

therefore be made with caution. Nevertheless, these issues of nomenclature in no way question the fact that very

different ambiguity effects were observed in different tasks using the same items in the work by Hino and colleagues,

but bear only on whether the overall ambiguity advantage that they report is across homonyms and polysemes or, per

the definitions that we introduce later, across hybrid items and polysemes.

2 An additional reason for dismissing the potential role of these dynamics was that these dynamics did not seem to

agree with the homonymy advantage in lexical decision and the homonymy disadvantage in semantic categorization.

As we elaborate on in the discussion based on the results of our study, there may be reason to view some of the

“homonyms” in previous studies as also being polysemous. This opens up new interpretational possibilities on that

front.

3 For example, we do not rule out the possibility that semantic activity could feed back and shape orthographic

processing to some degree, as is assumed in other accounts, particularly of lexical decision (e.g., Hino et al., 2006).

However, given that such accounts assume that there are differences in semantic activity, either overall or in how it is

distributed, and the response system can attend to semantic activity directly in other tasks that depend on semantics

(e.g., semantic categorization), it appears more parsimonious to assume that semantics can influence the response

system directly in all tasks.

4 This assumption also helps dissociate our account, which is directly concerned with cooperative and competitive

dynamics due to ambiguity, from the separate (and potentially confounding) issue that more semantically rich items

are often shown to be associated with a processing advantage (Pexman, Lupker, & Hino, 2002; Pexman, Hargreaves,

Siakaluk, Bodner, & Pope, 2008; Plaut & Shallice, 1993). Unless it can be demonstrated that particular interpretations

always vary in semantic richness depending on whether the item is a homonym, polyseme, or unambiguous word,

this appears to be the most neutral assumption for developing theories of semantic ambiguity. Insofar as imageability

ratings can viewed as a proxy for estimating featural richness, the norming that we conducted in our own study

also suggests that our word types did not differ on this measure (see Table 1; participants were asked to give an

"average" imageability across all interpretations of ambiguous words). Of course, this is not to say that there may
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not be interactions between richness, number of interpretations, and other psycholinguistic variables—recent work

suggests that there are; Jager & Cleland, 2016; Jager, Green, & Cleland, 2015—but probing this additional interaction

is outside the scope of the present work. The present, computationally explicit account of semantic settling dynamics

may be a useful platform for conducting these studies given that such complex interactions are difficult to capture with

underspecified verbal theories.

5An empirical test of these ideas is also likely to prove an important major project in and of its own work simply

because it is not clear how to generate appropriate subjective measures of featural overlap and relate those to the

featural overlap in computational models. For example, the results of the (Cree & McRae, 2003) feature norming

study suggest that having participants list the features associated with specific interpretations may bias participants

to generate distinctive features as opposed to shared features. Alternatively, asking participants to rate subjective

relatedness on a Likert scale would not ensure that their ratings could be mapped onto a linear measure of featural

overlap.

6 This description abstracts away from several other complicating subtleties such as nonlinear input-output func-

tions in neural networks, the fact that the account assumes that competitive/inhibitory effects are assumed to be weak

but not entirely absent, and the noisy nature of neural computation may further bias the response system to only con-

sider a given feature to be active once it has exceeded some minimum activation level. However, these subtleties are

considered to be secondary factors relative to the core claims outlined in the main text.

7When the items were selected, the only published large-scale database of homonym meaning frequencies was an

older study by Twilley, Dixon, Taylor, and Clark (1994), and our preliminary investigations of the predictive validity

of those norms called into question their utility in selecting our items. Indeed, this motivated our development of a

new approach to relative meaning frequency estimation and the creation of the largest corpus of meaning frequency

estimates in English (Armstrong, Tokowicz, & Plaut, 2012; see also Armstrong et al., 2015). However, because the

validity of our new norming method had not been established at the time, we estimated that a sample of 100 homonyms

would contain at least enough homonyms with balanced meaning frequencies to allow for meaning frequency to be

controlled for in the analyses.

8 By basing our statistical analyses on all of the data from the hybrid and homonym items and including the

numerous other confounding variables as predictors, we ensure that our significant effects were not caused by only

analyzing and plotting the results of a subset of the homonyms and hybrids that could have been driven by group-level

confounds in the subsets.

9Additional information regarding the models, methodology and results are available from the first author.

10log10(1+ f ) was used instead of raw frequency f . Residual familiarity, for which the effects of the meaning and

sense variables at the heart of these investigations were first removed, was employed instead of raw familiarity. Raw

and residual familiarity correlated strongly in the different analyses (r’s ≥ .94). The number of WordNet definitions
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was not included because it represents a sum of both unrelated and related interpretations, which are the critical

psycholinguistic variables under study

11 Note that the sign of the disadvantage in the statistical tests of the pseudohomophone-degraded condition, which

includes all of the experimental items and in which all variables were controlled for via item-level matching, indicates

a homonymy disadvantage, as in the other cases. However, non-perfect matching between the unambiguous controls

and subset of the most balanced homonyms included in this figure on other control variables initially gives the vi-

sual impression that a homonymy advantage was detected in the figure. In turn, this plot suggests that differences in

other psycholinguistic variables (e.g., slight differences in word frequency, neighborhood size, etc., across conditions),

which are controlled for in the actual analyses, as well as other sources of variability (e.g., different amounts of vari-

ability in the magnitude of homonymy effects across participants; different overall amounts of participant variability)

are responsible for this apparent discrepancy.

12 We also examined the main effects of stimulus contrast and nonword difficulty for the analysis of the word data

reported in the main text, as well as in simplified analyses of the nonword data, which only included the difficulty

manipulation and random intercepts for participant and item. Because the results of these analyses parallel those

reported in the main text, we summarize them, in brief, below. Nonword latencies always increased significantly

when difficulty was increased (all p’s < .05). Word latencies always increased significantly across contrast levels for

each nonword type (all p’s > .001). Weaker marginal trends were detected for the nonword difficulty manipulations

within each contrast level (full contrast - hard vs. very hard nonwords: p = .09; hard vs. pseudohomophones p = .07.

Degraded contrast - hard vs. very hard nonwords: p = .15; hard vs. pseudohomophones: p = .12). As was our

aim in providing feedback after each block to reduce between condition differences in accuracy, overall accuracy

did not decrease significantly except in the nonword data when comparing hard and very hard nonwords under full

feedback (p = .003), although there were a few marginal trends (nonword data: hard vs. pseudohomophones, full

contrast: p = .10; full vs. degraded contrast, hard nonwords, p = .11; full vs. degraded contrast, very had nonwords:

p = .09, although this trend is not in the predicted direction; word data: full contrast, hard vs. very hard nonwords:

p = .04; degraded contrast, hard vs. very had nonwords: p = .08; all other p’s > .15; tests were one-tailed). Overall,

these results are consistent with the notion that the stimulus contrast manipulation had a stronger influence on overall

performance—and latency in particular—than the nonword difficulty manipulation.

13 Note that if one focuses only on the unambiguous control word latencies, the lexical decision task (563 ms)

appears to generate identical response latencies as the two narrow semantic categorization tasks (Experiment 3: 566

ms; Experiment 4: 559 ms). Thus, based on those data in isolation (and ignoring the weak and noisy nature of between-

participant comparisons noted later in the discussion), it would be reasonable to assume that overall latencies were

constant and therefore that ambiguity effects should be constant according to the SSD account. Given that different

ambiguity effects were observed, by this logic the semantic settling dynamics account does not successfully capture
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these data. That said, we view the averaged latencies as a reasonable measure because they should not only be more

stable estimates of mean latencies but also ensure that a response bias was not keeping some responses at a relatively

constant speed by slowing other responses. More work will be needed, however, to flesh out which interpretation is

correct; computational models of response selection will likely be particularly valuable to this end.

14Indeed, a polysemy disadvantage is predicted to emerge during very late processing, but its magnitude should

be very small compared to the homonymy disadvantage, particularly for polysemes with reasonably high amounts of

feature overlap across interpretations. The absence of this effect in the Hino et al. (2006) study may therefore be due

to the task still not being hard/slow enough and/or to statistical power issues—both of which could be the subject of

additional targeted empirical study.

15 In abstract, this logic is also similar to that used by Pexman et al. (2004) to explain why they failed to detect

ambiguity effects of high-frequency words in lexical decision. Specifically, they state that "For high-frequency words,

responses are sometimes made before semantic feedback can have a significant impact on orthographic activation,

and, therefore, there will be situations where no ambiguity effect is observed for high-frequency words in [lexical

decision]" (p. 1255). Although we propose a slightly different account where semantic activation can, in principle,

drive the response system directly, these results emphasize the importance of making the task hard and slow (both in

terms of the words and nonwords) for substantial semantic processing to take place so as to observe ambiguity effects.

16Similarly, in a pilot study, we failed to observe different ambiguity effects in a lexical decision task with explicit

response deadlines, which may be due to how participants speed up to meet the deadline or due to noise in how well

participants matched the deadline.
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Appendix A. Neural Network Simulation

Given the complex set of interactions assumed to underlie the SSD account, we have also

sought to go beyond a simple verbal account to show that the relevant principles actually give rise

to an extensive number of empirically observed patterns of results. Accordingly, we carried out a

small-scale simulation to examine how the cooperative and competitive dynamics within a

biologically-motivated connectionist network interact with representational differences between

polysemous, homonymous, and unambiguous words to produce different ambiguity effects at

different points in time (see Armstrong & Plaut, 2008, for related work using a model which

makes similar but non-identical assumptions regarding featural overlap, number of features,

certain aspects of the neurobiology, etc., which rules out the possibility that the following results

are specific to only this network).

Model Architecture. The simulation was instantiated in a more neurobiologically realistic

variant of the standard connectionist formalism (see also Armstrong & Plaut, 2013; Laszlo &

Plaut, 2012; Laszlo & Armstrong, 2014; Plaut & Booth, 2000; Watson, 2009) with the following

properties: 1) there are distinct populations of excitatory and inhibitory units, as reflected by

constraints on the sign of the unit’s outgoing weights; 2) there are far fewer inhibitory units than

excitatory units; 3) the connections between layers (e.g., orthography and semantics) are only

excitatory, whereas connections within a layer are both excitatory and inhibitory; and 4) the

density/strength of between-layer connections is weaker compared with within-layer connections.

Each of these properties contribute to encouraging stronger/faster excitatory dynamics and

weaker/slower inhibitory dynamics.

The model architecture is presented in Figure 3. In keeping with its minimalist design, the

network was composed of four orthographic input units, each of which was used to represent an

individual word, two context units, each representing one of two separate contexts, and 22 units

representing semantics (the training patterns are described in detail later). Of these 22 units, 21

were excitatory units (i.e., it could have positive outgoing weights only) and were used to code

the distributed semantic representations of the words presented during training. The remaining
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unit was inhibitory (i.e., it could have negative outgoing weights only) and did not correspond to

an explicitly-specified semantic feature.

- - - - - - -

Insert Figure 3 Here

- - - - - - -

Both the orthographic and the context units were connected to the semantic units. These

between-layer connections were restricted to be excitatory only (non-negative). The excitatory

semantic units were connected to one another with excitatory connections, with the exception that

units did not connect to themselves. All of the excitatory weights were initialized to a value of

0.05, such that the initial magnitudes of the orthographic and context inputs were equal. Thus,

any differences that emerge between the orthographic and context weights should be due to how

critical each type of information is to activating the representation of each word class. The

inhibitory weights were initialized to a value of -0.2. This balanced, in approximate terms, the

amount of excitation that a semantic unit was expected to receive early in training with an

equivalent amount of inhibition. Additionally, all of the units in the network had a bias

connection—equivalent to a connection from an additional input unit that is always active—that

was set to an initial value of 0. There was no other variability in the weight values to simplify the

interpretation of the weight structure of the network. To constrain the magnitudes of the weights

that could be learned for connections between versus within layers, the between-layer

connections were subjected to weight decay after each weight adjustment (λ = 0.00025).

Within-layer connections, including the connections to and from the inhibitory unit, were not

subject to any weight decay.
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Training patterns. The training representations used in the simulation are presented in

Table 3. Localist representations were used to encode each word form and context. This allows

for a simplified interpretation of the weight structure, presented later. A distributed semantic

representation was associated with each word/context input pair, and different groups of units

were used to represent the semantic features associated with each interpretation of a word. Note

that none of these specific architectural decisions is not key to obtaining the observed effects, as

illustrated by Armstrong and Plaut (2008), who used distributed representations different amounts

of featural overlap, and different absolute numbers of features. Future work will be needed,

however, to flesh out exactly how much featural overlap is needed to obtain a processing

advantage or disadvantage at a particular point in time, and how that overlap relates to empirical

measures of featural overlap, as described in the introduction.

The training set consisted of two unambiguous words, one homonymous word, and one

polysemous word, each presented in two contexts. Each unambiguous word consisted of the

pairing of a single orthographic unit with a group of four active semantic units. These

orthographic/semantic input/output pairs were presented in two different contexts, represented as

the activation of one of the two context units. The pattern structure for ambiguous words differed

as follows: For the homonyms, two different groups of four semantic units were associated with

the orthographic input, depending on which context was activated. For the polysemes, three

semantic units were associated with the orthographic input regardless of the context but the fourth

semantic unit was different for each context. Note that the choice of using only four semantic

units was made strictly for simplicity. Additionally, considerable past work has shown that using

such small raw numbers of semantic features can lead to relatively precise simulations of a range

of different phenomena linked to semantics (Laszlo & Armstrong, 2014; Laszlo & Plaut, 2012;

Plaut, 1997).

The presentation of each word was structured so that the orthographic input would be

activated for 20 unit updates, after which both the orthographic and context outputs were

activated for an additional 20 updates. This was intended to reflect the weak/late effect of context
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in as simple a way as possible and is not to be interpreted as implying a formally staged theory of

contextual access (cf. Sternberg, 1969; Swinney, 1979).

- - - - - - -

Insert Table 3 Here

- - - - - - -

Training. The network was trained using recurrent back-propagation through time

(Pearlmutter, 1989) and momentum descent, so that it activated the correct semantic features once

both the orthographic input and context had been presented. A learning rate of 0.0001 and

momentum of 0.9 were employed (momentum was set to 0 for the first update). A relatively small

learning rate was selected to maintain a positive gradient linearity across the weights that resulted

from each weight update, which is more difficult if excitation and inhibition are represented in

distinct pools of units. Units were considered to be correctly activated when they were within

0.15 of their target activation. Error was computed for the last 5 unit updates. Between each

training pattern, the net input was reset to -1.4 and the net output was reset to 0.2 for all of the

units. Weights were updated after each sweep through the training vocabulary. The model was

trained until all semantic units were within 0.5 of their targets for each of the input patterns.

Results

Figure 4 plots the sum of semantic activations that exceeded a threshold value of 0.5 after

training. This value was chosen for simplicity because it also corresponds to the standard binary

threshold used to determine if a unit is on or off, however, the results do not hinge on this specific

choice of measure (for a few examples using other measures, see, e.g., Armstrong, 2012;

Armstrong & Plaut, 2008). Examining the activation trajectories at successive time intervals, the
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model exhibits an early polysemy advantage (time A), followed later by a homonymy advantage

and a polysemy disadvantage (time B), a homonymy disadvantage (time C), and finally, by a

disadvantage for all ambiguous words (time D). Note that, as described in the introduction, the

choice of measuring slices of time on the x-axis was intentional because although we assume that

semantic activity drives the response system directly, other sources of evidence (which do not

differ between ambiguous and unambiguous words, e.g., orthographic neighborhood in lexical

decision) can still provide overall evidence for responding in general, without differing between

word types. Here, we focus only on the unique driving force that semantics supplies.

To relate the slices of time on the x-axis to the empirical study of lexical decision that we

report, we make the following assumptions. First, by instructing participants to maintain a

specific accuracy level across our nonword difficulty and stimulus contrast conditions, we assume

that the total amount of evidence indicating that a word versus a nonword was presented remains

(approximately) constant, as well. However, different sources of evidence may be differentially

informative for making fast and accurate responses in different conditions. For example, using

more orthographically wordlike nonwords could reduce the degree to which orthography can

serve as basis for discriminating words from nonwords, leading to less (and by proxy, slower)

accumulation of the total evidence in favor of a particular response. In turn, more overall

processing would take place, including semantic processing, which allows for the sampling of

different slices of the semantic settling dynamics and shape the patterns of responses.

- - - - - - -

Insert Figure 4 Here

- - - - - - -
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A.4 Weight structure. An analysis of the pattern of learned weights in the network

provides some insights into how the network’s knowledge of the words could interact with the

representations of the different words and cooperative and competitive dynamics to give rise to

the observed semantic activity. Of course, the weights only form a part—albeit a very important

one—of understanding the full complexity of the settling dynamics within the network. Note that

because there was no random variance in the initial weights, interpreting this weight structure is

greatly simplified because the reported values are identical for all units within each sub-network.

Within semantics, the analysis revealed strong excitatory sub-networks for each

interpretation of a word. Numerically, the weights among the core features were higher for the

polyseme (weight value = 2.93) than for either the homonym or the unambiguous words, which

had approximately equal intra-semantic excitatory weights (2.38 and 2.37, respectively). The

distinct features of the polyseme had weaker incoming weights from the core features of the

polyseme (1.08), but sent relatively stronger outgoing weights to the core features (1.23), and

were disconnected from the distinct feature with which they were not consistent (0.0); the same

was true for the connectivity between the semantic features used to code each meaning of the

homonym. The learned weight structure associated with the polysemes is also similar to that

which underlies basic-level category organization and the associated basic-level processing

advantage (Rogers & Patterson, 2007).

The input from the inhibitory unit was largest for the homonym’s features (-2.21), followed

by the input to the core features of the polyseme (-2.00) and unambiguous words (-1.87); the least

inhibition was associated with the distinguishing features of the polyseme (-1.66). These results

are consistent with the predictions of the account, in terms of how much competition should exist

for homonyms (high competition), polysemes (low competition), and unambiguous words (no

competition). The fact that the distinct features of the polyseme receive less inhibition is

commensurate with the reduced excitation that they receive from the core features and the other

distinct features.

The incoming weights from orthography and context were an order of magnitude smaller
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than the weights within semantics, consistent with the assumption (and imposed model

architecture) that such connectivity better reflects the actual connectivity structure in cortex.

Feeding into semantics, the orthographic inputs with the strongest weights projected to the core

features of the polyseme (0.14), followed closely by the weights to the unambiguous words’

semantic features (0.13), by the weights to the semantic features of the homonym (0.10), and

finally by the weights to the distinguishing features of the polyseme (0.07). With respect to the

context units, the semantic features of the unambiguous words and the core features of the

polysemous word were not sensitive to this information (weights = 0). The distinguishing features

of the polyseme had moderate incoming weights from context (0.14), whereas the semantic units

associated with the homonym received a relatively strong weight from context (0.25). These

connectivity patterns are consistent with the differential need to rely on context to activate an

appropriate semantic representation.

Overall, this connectivity structure is consistent with the predicted relative contributions of

word form and context, and of cooperation and competition among consistent and inconsistent

semantic features, that underlie the SSD account. It also helps flesh out how the presentation of a

given input representation can interact with the network’s memory, as encoded in the weights, to

give rise to the simulated semantic settling dynamics.

Discussion

Collectively, these results substantiate the verbal description of the SSD account in explicit

mechanistic terms, in that the observed changes in semantic activation over time exhibit the core

properties of the account. Experiments associated with fast responses, such as visual lexical

decision (e.g., Beretta et al., 2005; Klepousniotou & Baum, 2007; Rodd et al., 2002), could reflect

the dynamics near time A in Figure 4, leading to a polysemy advantage; extremely easy versions

of lexical decision with very fast responses would tap semantics before this point when there is no

substantial activity for any word class (Azuma & Van Orden, 1997; Rodd et al., 2002). Tasks that

are associated with slower responses, such as semantic categorization involving broad categories
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(Hino et al., 2006), are consistent with the dynamics at time C, at which only a homonymy

disadvantage is present. Tasks that require even more processing, such as those involving the

activation of a contextually appropriate interpretation are typically associated with a processing

disadvantage for ambiguous words, consistent with time D (e.g., Frazier & Rayner, 1990; Piercey

& Joordens, 2000; Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982; Swinney, 1979;

Tabossi, 1988; Van Petten & Kutas, 1987, although, as in the model, the disadvantage is smaller

for polysemes, Williams, 1992).
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Table 1

Properties of the Word Stimuli

Unambig. Poly. Homon. Hybrid

example tango blind yard stall

Word Frequency 20.5 21.1 20.8 21.2

Length in Letters 4.5 4.4 4.4 4.4

Number of Meanings 1 1 2.1 2.4

Number of Senses 5.6 12.9 6.2 14

WordNet Definitions 5.9 12.3 6.7 12.6

Positional Bigram Frequency 174 192 201 191

N 11.1 11.0 12.3 13.8

LD 1.4 1.3 1.3 1.3

Phonemes 3.6 3.7 3.6 3.7

Syllables 1.2 1.1 1.2 1.1

Familiarity 4.9 4.9 4.7 4.7

Imageability 4.7 4.8 4.8 4.6

Dom. Mean. Freq. 100* 100* 82 77

Note. Word frequency data were obtained from the SUBTL database (Brysbaert & New, 2009).

Positional bigram frequency and orthographic neighborhood metrics were also calculated based

on the words in SUBTL with frequencies greater than or equal to one. Familiarity, imageabil-

ity, and meaning frequency were normed after the stimuli were selected and were not matched

across quadruplets. *Dominant meaning frequency was assumed to be maximal for these items

in the regression analyses. Unambig. = Unambiguous. Poly. = Polysemous. Homon. = Homony-

mous. WordNet Definitions = number of definitions in wordNet (Fellbaum, 1998). N = Colt-

heart’s N (Coltheart, Davelaar, Jonasson, & Besner, 1977). LD = orthographic Levenshtein dis-

tance (Yarkoni, Balota, & Yap, 2008). Dom. Mean. Freq. = frequency of dominant meaning.
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Table 2

Properties of the Nonword and the Word Stimuli

Stimuli

Hard NWs V. Hard NWs Pseudo. NWs Words

Length bi N LD bi N LD bi N LD bi N LD

3 14 15 1.1 29 31 1.0 25 28 1.0 24 26 1.0

4 121 10 1.4 180 16 1.1 125 15 1.1 125 15 1.1

5 261 4 1.7 608 13 1.3 246 6 1.6 228 6 1.5

6 625 2 1.9 1789 9 1.5 377 4 1.7 603 3 1.8

7 1000 1 2.4 3190 10 1.4 429 1 2.2 766 1 2.1

8 1355 1 2.6 3777 3 1.8 678 0 2.6 806 1 2.3

Note. Four- and five-letter strings made up 85% of the items. bi = positional bigram frequency. N

= Coltheart’s N. LD = orthographic Levenshtein distance.
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Table 3

Orthographic, Context, and Semantic Representations used in the Simulation

Item Type Orthography Context Semantics

unambiguous 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

unambiguous 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

polysemous 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

homonymous 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
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Figure 1. Accuracy data for each word type in each condition. H-F = hard-full. V-F = very

hard-full. P-F = pseudohomophone-full. H-D = hard-degraded. V-D = very hard-degraded. P-D =

pseudohomophone-degraded. H = homonym. U = unambiguous. P = polyseme. Y = hybrid. NW

= nonword. Significant (p < .05) and marginal (p < .1) differences between homonyms and

polysemes relative to unambiguous items are denoted by single and double lines, respectively.

Note that the statistical tests are sensitive to meaning frequency and control for many

psycholinguistic properties.
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Figure 2. Correct latency for each word class in each condition. H-F = hard-full. V-F = very

hard-full. P-F = pseudohomophone-full. H-D = hard-degraded. V-D = very hard-degraded. P-D =

pseudohomophone-degraded. H = homonym. U = unambiguous. P = polyseme. Y = hybrid. NW

= nonword. Significant and marginal differences between homonyms and polysemes relative to

unambiguous items are denoted by single and double lines, respectively.
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Figure 3. Architecture for the network from the simulation. Solid red (dark) arrows indicate

excitatory connections and blue (light) arrows indicate inhibitory connections. Connections

depicted by thinner arrows were subject to weight decay.
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Figure 4. The average amount of semantic activation exceeding a threshold of 0.5 for polysemous,

unambiguous, and homonymous words. Activation did not exceed the threshold during earlier

processing. Vertical slices A-D correspond to points at which the model exhibits several important

patterns of effects reported in the literature. The y-axis corresponds to the sum of the semantic

activation that exceeds a 0.5 activation threshold across all semantic units in the simulation.
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