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Abstract 

We describe a theory of decision system adaptation in which yoked 
criteria shifts serve as a simple but powerful mechanism for rapidly 
minimizing errors without sacrificing speed.  To support our 

theory, we implemented a connectionist model of lexical decision, 
wherein the state of a word perception network was “read” by a 
pair of decision units.   The response criteria for these decision 
units were then subjected to yoked shifts to examine how, in the 
face of perceived errors, such a response mechanism might adjust 
performance.  We also present the results of a lexical decision 
experiment that manipulated the truthfulness of the feedback 
participants received so as to trigger the error correction 

mechanism while keeping other task parameters constant.  The 
results of the experiment largely parallel those of the simulation, 
suggesting that yoked decision shifts make an important 
contribution to error minimization in decision system adaptation. 
 

Keywords: decision making, decision system adaptation, 
yoked criteria shifts, lexical decision, connectionist modeling. 
 

An individual’s ability to rapidly and correctly decide 

between two alternatives is critical to their survival and 

wellbeing.  For example, a new driver may learn to brake or 
accelerate when faced with a yellow light under dry road 

conditions.  However, if one day it snows their established 

decision behavior will need to be adapted to accommodate 

this fact.  Thus, the driver must be capable both of deriving 

an initial calibration of their decision system, and of rapidly 

adapting this system in face of change.  

The work reported in this paper focuses on how the 

updating of a previously well-calibrated decision system is 

accomplished.  Motivating our work is an interesting pattern 

of effects reported by Gomez, Ratcliff, and Perea (2007), 

who varied the task participants completed (two-choice 
lexical decision vs. go/no go lexical decision) in a within-

subjects design.  After fitting their data with a diffusion 

model, the authors determined that changes of the decision 

criteria were key in accounting for performance differences 

across task blocks, with adjustments to most other 

parameters only having a modest effect. 

Within the context of decision system adaptation, Gomez 

et al.’s (2007) findings might also suggest that rather than 

re-configure the system de novo when faced with different 

task demands, participants may adapt to the new task 

primarily by shifting their decision criteria.  In many cases, 

such a shift may provide a rapid means of accommodating 

modest (and perhaps not so modest) changes without 

necessitating a potentially costly re-derivation of all of the 

parameters in the decision system.   

If we assume that decision system adaptation occurs via 

shifts of decision criteria, this raises the question of how the 

criteria should be shifted.  We examined this issue within 
the context of an abstract forced choice task wherein 

participants must make rapid and accurate A and B 

responses indicating the presence of stimuli a and b. 

Imagine that after becoming proficient at the task, some 

property of the task changes such that participants’ find 

themselves incorrectly responding A to b items (e.g., all the 

b’s become more a-like).  One logical adaptation would be 

to shift the A decision criterion so as to require the 

additional accumulation of evidence that an a was presented 

before making an A decision.  However, such an adaptation 

would have the result of slowing overall reaction time (RT) 
because the average amount of evidence to be collected 

before making a particular decision will have increased―an 

effect which may not be adaptive if there are benefits 

associated with being fast. 

The issue of overall increases in RT can be avoided, 

however, if both criteria are shifted in unison, such that 

when more evidence is required to make an A response, less 

evidence is required to make a B response.  By keeping the 

average response criteria constant, overall accuracy and RT 

should remain (approximately) constant.  Furthermore, this 

yoked shift should lead to 1) an increase in accuracy for B 

responses as less evidence must be accumulated to reach the 
B criterion, and by corollary that 2) RTs for b stimuli should 

decrease as accumulating less evidence should take less 

time; the converse―namely decreased accuracy and 

increased RT―would be predicted for A responses.  It is 

worth noting that data compatible with these speed-accuracy 

relationships were reported by Wagenmakers, Ratcliff, 

Gomez, and McKoon (2008) in a lexical decision 



experiment in which the proportion of words and nonwords 

was varied across blocks of trials.   

To evaluate our proposal, we implemented a 

connectionist model of the lexical decision task to examine 

the effects of error correction via yoked criteria shifts.  We 

also carried out a lexical decision experiment in which we 
manipulated the truthfulness of external feedback 

participants received so as to alter perceived errors and 

determine whether participants’ responses adapted in a 

similar fashion as in the model. 

Simulation 

Our simulation builds upon previous connectionist models 

of word processing (Plaut, 1997) and decision making 

(Usher & McClelland, 2001), and how information from the 

former can be fed to a decision system to model lexical 
decision in a relatively comprehensive fashion (Joordens, 

Piercey, & Azarbehi, 2003).  In particular, our simplified 

version of lexical decision consists of 1) a visual word 

processing network wherein an orthographic input gradually 

activates semantic representations1, and 2) a pair of decision 

units able to measure the information content of semantics 

during the presentation of words and nonwords and use this 

to decide what type of stimulus was presented.  Holding all 

other parameters constant, we implemented yoked shifts of 

the decision criteria to determine whether this causes the 

predicted decrease in accuracy and increase in RTs for one 
type of response, and the converse for the other.   

 
Network Architecture.  The network consisted of 48 

orthographic input units, 200 hidden units, and 100 semantic 

output units.  The orthographic units were subdivided into 

three slots of 16 units, each of which represented a single 

letter in a three-letter word.  The hidden and semantic units 

integrated their net input over time (dt = 0.1) and their 

outputs were a sigmoidal function of their net input.   

The orthographic units fed their activation to the hidden 

units, and the hidden units fed their activation to the 

semantic units. Additionally, the semantic units fed their 
activation back to the hidden layer.  The hidden and 

semantic units also received input from a bias unit.  For all 

but the bias connections, the initial weights were sampled 

randomly from a uniform distribution with a mean of 0.0 

and a range of .25.  The bias weights were sampled with a 

mean of -1.7 and a standard deviation of .25 to reduce the 

overall activation in the hidden and output units; these bias 

weights were not altered during training. 

 
Training Patterns.  The network was trained on 518 pairs 

of orthographic and semantic representations corresponding 
to all three-letter words in the MRC Psycholinguistics 

database (Coltheart, 1981; Wilson, 1987).  Artificial 

representations for each letter in the alphabet were 

generated by randomly activating 4 features in a 16 feature 

                                                        
1 For simplicity our simulation does not contain phonological or early 

visual representations, although a complete model of lexical decision 

would include such factors.   

vector, with the constraint that these representations differed 

from one another by at least 2 units.  This ensured that each 

letter was represented somewhat distinctly while also 

partially recycling the orthographic units. The complete 

orthographic representation for a word consisted of the 

activation of each of its letter representations across the 
respective slots in the orthographic pool.  To approximate 

the categorical structure of semantics, unique semantic 

representations for each of the words were generated as in 

Plaut (1997).  First, 37 category prototypes with 15 of 100 

semantic units active were generated.  Each prototype was 

then distorted to generate a total of 14 category members by 

regenerating each of the its features with a probability of 

.05, and deciding to activate a regenerated feature with a 

probability of .15; these representations were further 

constrained such that they all differed from one another by 

at least three units. Semantic representations were randomly 

paired with orthographic representations to reflect the 
arbitrariness of orthographic-to-semantic mappings.   

 
Training.  The model was trained using recurrent back-

propagation through time with a learning rate of 0.002 and 

momentum descent of 0.9 (set to 0.0 for the first 50 sweeps 

through the training examples).  Before each example, the 

activation in all of the units in the network was set to 0.15.  

Each example consisted of clamping on an orthographic 

representation for 50 unit updates, and allowing this 

activation to percolate through the hidden and semantic 

units.  Cross-entropy error was calculated during the last 10 
unit updates, with units considered to be correctly activated 

or inactivated when they were within 0.1 of their target 

values.  Weight changes based on error was applied after the 

presentation of the full example set.  Training proceeded 

until all units in all examples were within 0.1 of their target 

values during the last 10 unit updates; this required 

approximately 10 000 sweeps through the training corpus.   

 

Simulating Lexical Decision.  Lexical decision was based 

on the information content of the semantic units, which we 

measured using stress Sj (Plaut, 1997), defined as:  
 

Sj = ajlog2(aj) + (1-aj)log2(1-aj) – log2(0.5) 

 

Where aj corresponds to a unit’s activation.  Stress is a 

nonlinear function of the degree to which a unit’s activation 

deviates from 0.5.  Given that the network was trained such 

that word stimuli would correctly activate or inactivate 

semantic features within a radius of 0.1, stress should be 
high for words.   In contrast, nonwords should partially 

activate multiple semantic representations; this blended 

semantic representation should contain less extreme unit 

activations and hence produce lower stress.  For clarity, in 

the present simulation overlap of the word and nonword 

stress distributions was minimized by selecting the 518 

three-letter nonwords with the lowest stress after 50 unit 

updates.2   

                                                        
2 This maximizes the network’s ceiling performance, but the effects of 

yoked feedback are not strictly bound to these extreme nonwords. 



Lexical decisions were made by ‘word’ and ‘nonword’ 

leaky integrator decision units (Usher & McClelland, 2001).  

These units approached their respective decision criteria by 

accumulating both excitatory external input, and inhibitory 

input from the competing unit and a leakage factor.  

Formally, a decision unit’s activation aj was defined as: 

 

aj  = (1-τ)aj(t-1) + τ(Ie – kaj(t-1)  - Bai(t-1));  max(aj, 0). 

 

Where aj(t-1) corresponds to the unit’s activation at the 

previous unit update, Ie corresponds to the unit’s external 

input (the ‘word’ unit’s external input was the semantic 

stress trajectory in the current example; the ‘nonword’ unit’s 

external input was the average, or referent, trajectory across 

all experimental words and nonwords), k corresponds to a 

decay scaling factor, B corresponds to an inhibition factor, 

ai(t-1) corresponds to the activation of the competing decision 

unit at the previous unit update, and τ corresponds to a time 
integration constant.  The resulting activations are bounded 

to not drop below zero, and a decision is defined as 

occurring once one of the units crosses pre-specified 

decision criteria (discussed below).  In our simulations, only 

the decision criteria for the yes and no units were varied, 

with all other parameters remaining fixed (ai = aj = 0.0 at 

the onset of a trial, k = 0.1, B = 0.7, τ = 0.1, to match the 

time integration in the orthography-to-semantics network).   

This unit activation equation corresponds to a simplified 

version of the leaky integrator units described by Usher and 

McClelland (2001; Equation 4, p. 559) from which the 
Gaussian noise term has been dropped for simplicity. Thus, 

the only source of trial variability is due to variability in the 

stress trajectories of the words and nonwords.  In cases 

where the word and nonword distributions minimally 

overlap, only the stress trajectories of words should be 

sufficiently above those of the referent trajectory to drive 

the ‘word’ unit above its decision criterion; conversely, only 

the stress trajectories for nonwords should be sufficiently 

below the referent trajectory for the referent trajectory to 

drive the ‘no’ unit above its decision criteria.  However, as 

participants are pressed to respond more rapidly under 

difficult conditions, the increased overlap of the word and 
nonword trajectories should lead to increased errors. 

We first simulated lexical decision results that roughly 

correspond to those of the truthful feedback blocks in the 

Experiment we report, in which participants are instructed to 

respond as quickly and as accurately as possible to a 

difficult lexical decision task and performance has dropped 

below ceiling.  To do so, we employed a ‘word’ decision 

criterion of 0.355 and a ‘nonword’ decision criterion of 

0.360, and collected response data for all 518 words and 

nonwords.  These criteria were selected by decreasing the 

decision criteria so that the units were responding when 
there was still considerable overlap in the stress 

distributions for words and nonwords.  In two additional 

conditions, yoked criteria shifts theorized to occur when 

there is a perceived decrease in relative accuracy for either 

words (i.e., increased ‘word’ decision criterion, decreased 

‘nonword’ decision criterion) and nonwords (i.e., decreased 

‘word’ decision criterion, increased ‘nonword’ criterion) 

were simulated by shifting the response criteria by 0.003 in 

opposite directions, and responses for all experimental 

words and nonwords were again collected.   

Results and Discussion 
 

As a manipulation check, before simulating difficult lexical 

decision we examined the model’s lexical decision accuracy 
if allowed to process information across 50 unit updates 

(similar to a non-speeded condition); the network showed 

near perfect performance (overall accuracy > 98%).  We 

then examined the effects of yoked criteria shifts relative to 

baseline performance in a difficult speeded lexical decision 

task, the results of which are reported in Table 1.  The 

results show the predicted changes in accuracy and feedback 

after yoked criteria shifts.  Relative to baseline, word 

decisions are slower and less accurate when the word 

decision criterion is increased and the nonword criterion is 

decreased; the converse is true for the converse 
manipulation.  Given the low standard errors, we have 

forgone reporting detailed statistical analyses of the data.   

 

Table 1.  Accuracy and Reaction Time for the Simulation 
 

Condition 

         Baseline               W (+), NW (-)           W (-), NW (+)      

Lex Acc SE RT SE Acc SE RT SE Acc SE RT SE 

W .71 .02 17.82 .08 .64 .02 17.93 .08 .77 .09 17.24 .02 

NW .64 .02 19.94 .03 .73 .02 19.63 .03 .59 .04 20.36 .01 

Lex = lexicality; Acc = accuracy; SE = standard error of the mean 

(stimuli); RT = reaction time (unit updates). W = word; NW = nonword. 

 

Experiment 
 

The behavioral experiment was designed to manipulate the 

position of the decision criteria while holding all other 

aspects of the task constant.  To do so, we implemented a 

difficult version of lexical decision to drop performance 

below ceiling and to be able to observe criteria shifts, while 
also encouraging participants to rely on external feedback to 

calibrate their decision system. We then manipulated 

perceived errors to either words or nonwords via two forms 

of false feedback to determine if this produced the criteria 

shifts predicted by the simulation. 

The experiment was divided into four conditions.3  

Conditions Ia and Ib contrasted truthful feedback versus 

concordant false feedback to nonwords (Ia) and words (Ib), 

respectively, by informing participants that they had 

correctly responded when they were in fact incorrect.  Based 

on our simulations, we predicted that this would lead to a 

relative increase of the perceived accuracy for the type of 
stimulus receiving congruent false feedback and a relative 

decrease in the perceived accuracy for the type of stimulus 

                                                        
3
 An additional control condition not reported showed that providing 

feedback per se has no significant effect on performance.   



receiving truthful feedback.  Consequently, participants’ 

decision criteria should be shifted such that less evidence 

was required to make decisions indicating the item was of 

the type receiving  false feedback (leading to higher 

accuracy and faster responses), and more evidence was 

required to make responses indicating the item was of the 
type receiving truthful feedback (leading to lower accuracy 

and slower responses).  For condition Ia, relative to truthful 

feedback, concordant false feedback for nonwords should 

lead to faster and more accurate feedback for words and 

slower and less accurate responses for nonwords; the 

converse should be true in condition Ib.   

Conditions IIa and IIb contrasted the effects of truthful 

feedback versus discordant false feedback to nonwords (IIa) 

and words (IIb), by indicating that participants had 

responded incorrectly to a particular item when they were in 

fact correct.  Interestingly, although superficially different, 

our proposed account treats the effects of discordant 
feedback for a given type of item as functionally equivalent 

to that of concordant false feedback for that type of item.  

To understand why, consider what type of error participants 

believe they have made when they receive discordant false 

feedback to nonwords (IIa).  Essentially, providing feedback 

that their nonword response was incorrect is equivalent to 

providing feedback that they incorrectly responded 

‘nonword’ to a word item.  Thus, to minimize this type of 

error, we predict that they will decrease their word decision 

criteria and increase their nonword decision criteria, exactly 

as they did in condition Ia.  Our predictions for each 
subsection of condition II are therefore identical to the 

corresponding subsection of condition I. 

 

Method 
 
Participants.  Undergraduate students in the introductory 

psychology course at the University of Toronto 

Scarborough participated in the experiment; 52 in condition 

Ia, 54 in condition Ib, 53 in condition IIa, and 52 in 
condition IIb.  All participants had normal or corrected to 

normal vision and participated in only one of the conditions. 

 
Aparatus. Computers running E-prime 1.1.4.1 (Schneider, 

Eschman, & Zuccolotto, 2002) were used to execute the 

experiment.  Each machine displayed output on a 15” Dell 

CRT monitor at a refresh rate of 85 Hz, and was equipped 

with headphones for the presentation of auditory feedback.  

Participants responded on a standard keyboard. 

 
Stimuli and Design.  The word stimuli were sampled from 

the MRC Psycholinguistics Database (MRC, 2005), and 
consisted of 160 nouns between four and six characters in 

length with a written frequency between 1 and 400 in the 

Kucera-Francis norms (mean = 55, SD = 66, skew = 2.9).  

The nonwords were generated by sampling a second set of 

non-overlapping word stimuli from the database constrained 

by the aforementioned criteria, and replacing a single 

consonant with another random consonant to make a 

nonword not in the database. (e.g., FATHER � NATHER).  

This produced nonwords with wordlike orthotactic structure 

so as to exacerbate task difficulty. 

For each participant, the stimuli were randomly divided 

into two blocks of 160 items for use in the truthful feedback 

and false feedback blocks.  The order of stimuli within these 
blocks was also randomized.   

 
Procedure.  Participants were instructed to decide whether 

the characters on the screen formed a word or a nonword by 

pressing “z” or “/”, respectively, and were provided with a 

demonstration trial.  They were instructed to respond to 

each trial as quickly and as accurately as possible.   

Each trial consisted of six steps:  (1) a 250 ms blank field, 

(2) a 500 ms fixation cross, (3) a 50 ms presentation of a 

lowercase character string, 4) a 50 ms mask consisting of 

three lines of 10 random characters filling the line where the 

probe string was presented, and the lines above and below 
it, (5) a response screen, and (6) 1000 ms of feedback, as 

detailed below.  At the end of each trial, the next trial began 

automatically; the procedure required approximately 40 

minutes.  Note the very short duration of the probe and the 

presentation of the character mask, which were used to 

lower performance from ceiling and encourage participants 

to rely on external feedback to detect errors.   

Feedback consisted of either 1) “CORRECT” and a bell 

sound, or “INCORRECT” and a buzzer sound.  Feedback 

reflected response accuracy during the truthful feedback 

block.  During false feedback, 50% of eligible items (i.e., 
incorrect responses for a particular type of item during 

concordant false feedback; correct responses for a particular 

type of item during discordant feedback) resulted in false 

external feedback.  Only half of the eligible trials received 

false feedback to make the manipulation difficult to detect. 

Following the experiment, participants completed a 

debriefing questionnaire to determine whether they were 

aware of the systematic change in feedback accuracy; 

according to the debriefing, none were.   

Results 

 
Prior to analysis, trials were binned based on lexicality 

(word vs. nonword), order of blocks (truthful block first vs. 

last), feedback block (truthful vs. false), and decision 

accuracy (correct vs. incorrect).  Accuracy analyses only 

included trials with RTs greater than 200 ms and within 2.5 

standard deviations of the bin’s mean RT (92% of trials).  

Correct trials meeting these restrictions were included in the 

RT analyses.  For efficiency, each condition’s descriptive 

statistics and the results of a mixed ANOVA with two 

within-subjects variables (lexicality, feedback block) and a 

between-subjects variable (order of feedback) are presented 

in Tables 2 and 3.  All significant effects have p < .05.   
 

Within-condition Accuracy.  In condition Ia, we observed 

a lexicality by feedback interaction consistent with the 

predicted effect of a yoked criteria shift.  Explored further, 



via t-tests, we confirmed the predicted effects of words 

becoming marginally more accurate (t53 = 1.66, p = .1), and 

nonwords becoming significantly less accurate during false 

feedback (t53 = 2.09).  Additionally, we observed a main 

effect of lexicality (words more accurate than nonwords) 

and a feedback by order of feedback interaction. We 
explored this latter effect further in separate 2 (lexicality: 

word vs. nonword) x 2 (feedback: truthful vs. false) within-

subjects ANOVAs for each order of feedback presentation; 

both these analyses showed main effects of feedback such 

that participants were more accurate during the second 

block of trials (truthful feedback first: F1,27  = 4.62; false 

feedback first: F1,25  = 9.74).   

In condition Ib, we observed a two-way lexicality by 

feedback interaction and a three-way interaction between 

lexicality, feedback, and order of feedback.  To explore this 

latter interaction, we conducted separate 2 (lexicality: word 

vs. nonword) x 2 (feedback: truthful vs. false) within-
subject ANOVAs for each order of block presentation.  

When truthful feedback was presented first, we observed the 

expected lexicality by feedback interaction (F1,21 = 12.51) 

with  words becoming less accurate and nonwords 

becoming more accurate during the false feedback block 

(words: t21 = 2.76; nonwords: t21 = 2.95).  However, no 

lexicality by feedback interaction or other effects were 

observed when truthful feedback was presented second. 

In condition IIa, we observed a lexicality by feedback 

interaction consistent with the predicted effect of yoked 

criteria shifts.  To explore this interaction, we conducted t-
tests on the words and nonwords in the truthful feedback 

and false feedback conditions, which confirmed that under 

false feedback responses were significantly more accurate 

for words (t52 = 4.10) and significantly less accurate for 

nonwords (t52 = 3.40).  Additionally, we observed a main 

effect of lexicality (words being more accurate than 

nonwords) and a feedback by order of feedback interaction 

which further analysis via separate 2 (lexicality: word vs. 

nonword) x 2 (feedback: truthful vs. false) within-subject 

ANOVAs for each order of block presentation showed to be 

the result of participants becoming significantly more 

accurate in the second block (main effect of feedback, 
truthful feedback first: F1,31  = 5.44; false feedback first: 

F1,20  = 15.20). 

In condition IIb, we observed lexicality by feedback 

interaction and a three-way interaction between lexicality, 

feedback, and order of feedback. We explored this latter 

interaction further via separate 2 (lexicality: word vs. 

nonword) x 2 (feedback: truthful vs. false) ANOVAs for 

each order of block presentation.  When truthful was 

presented first, the predicted lexicality by feedback 

interaction was observed, (F1,27 = 26.15) such that responses 

were less accurate for words (t27 = 3.33) and more accurate 
for nonwords (t27 = 5.71) under false feedback.  However, 

when false feedback was presented first there was no 

significant lexicality by feedback interaction (F1,23  < 1), and 

there were main effects both of lexicality, such that 

nonwords were responded more accurately than words (F1,23 

= 7.00), and of feedback, such that participants were faster 

during the second block which consisted of truthful 

feedback (F1,23 = 9.89).  

 
Table 2.  Accuracy and Reaction Times in the Experiment 

 
   Condition 

                    Ia                                      Ib                     

OF B L Acc SE RT SE Acc SE RT SE 

TFF TF W .69 .02 811 17 .67 .03 790 14 

  
NW .58 .02 935 18 .61 .02 864 14 

 
FF W .74 .02 674 15 .58 .04 689 13 

  
NW .59 .04 776 15 .68 .02 702 13 

FFF TF W .73 .03 655 14 .62 .04 602 11 

  
NW .58 .04 726 15 .71 .03 631 11 

 
FF W .74 .03 705 13 .62 .04 674 10 

  
NW .49 .04 864 18 .71 .02 794 14 

                    IIa                                     IIb                    

   Acc SE RT SE Acc SE RT SE 

TFF TF W .68 .03 714 13 .65 .03 784 14 

  NW .59 .02 812 12 .57 .02 885 15 

 FF W .77 .03 588 11 .57 .04 738 13 

  NW .57 .03 693 12 .68 .03 733 13 

FFF TF W .70 .03 616 9 .64 .04 725 15 

  NW .58 .03 739 12 .73 .03 715 13 

 FF W .74 .03 723 12 .58 .03 877 14 

  NW .45 .03 882 12 .68 .02 835 13 

Note.  In condition Ia, 28 participants received truthful feedback first; 26 

false feedback first.  In condition Ib, 22 participants received truthful 

feedback first; 29 false feedback first.  In condition IIa, 32 participants 

received truthful feedback first; 31 false feedback first.  In condition IIb, 28 

participants received truthful feedback first; 24 false feedback first.  OF = 

Order of feedback blocks; TFF = truthful feedback first; FFF = false 

feedback first;  B = block; TF = truthful feedback; FF = false feedback; L = 

lexicality;  W = word; NW = nonword;  Acc = accuracy; SE = standard 

error of the mean; RT = reaction time (ms) 

 
Table 3: F-Statistics for the 2x2x2 ANOVAs in the Experiment 

 
Condition 

           Ia                      Ib                      IIa                      IIb           

Acc RT Acc RT Acc RT Acc RT

lex 42.46*
 
35.07* 3.00† 17.68* 56.87 * 72.32 * 5.13* < 1

lex*ofb 1.73
 

< 1 1.31 1.23 1.42 1.88 3.11* 6.31*

feedback < 1
 

< 1 < 1 < 1 < 1 < 1 4.27* < 1

fb*ofb 14.00*
 
16.40* < 1 60.48* 16.93 * 81.75 * 10.62* 33.42*

lex*fb 5.44*
 

1.02 11.91* < 1 25.43 * 1.48 18.03* 14.15*

lex*fb*ofb 1.21
 

3.01† 12.33* 14.02* 1.87 < 1 12.47* 4.21*

ofb < 1
 

1.11 < 1 4.41* 1.37 1.40 1.96 < 1

Note.  Tests have 1 degree of freedom treatment.  Conditions Ia through IIb 

have 52, 50, 51, and 50 degrees of freedom error.  lex = lexicality;  ofb= block 

order; fb = feedback; Acc = accuracy; RT = reaction time.  † p < .1; * p < .05 

 

Within-condition RT.  In condition Ia, we observed an 

effect of lexicality (words faster), and a feedback by order 

of feedback interaction.  Separate 2 (lexicality: word vs. 

nonword) x 2 (feedback: truthful vs. false) ANOVAs for 

each block presentation order showed this latter effect to be 

due to faster RTs in the second block (main effect of 

feedback, truthful first F1,27 = 11.02; false first F1,25 = 5.74).   

In condition Ib, we observed a main effect of lexicality 

(words faster than nonwords), a main effect of order of 
feedback (faster for truthful feedback), a feedback by order 

of feedback interaction, and a lexicality by feedback by 

order of feedback interaction.  To explore these interactions 

further, separate 2 (lexicality: word vs. nonword) x 2 



(feedback: truthful vs. false) within-subjects ANOVAs for 

each order of block presentation were effectuated.  All of 

the effects in these ANOVAs were significant (truthful first, 

lexicality F1,21 = 3.50; feedback F1,21 = 45.65; interaction 

F1,21 = 6.76; false first, lexicality: F1,28 = 19.32; feedback 

F1,28 = 25.84; interaction F1,28 = 8.92) and indicated that 
responses were on average faster in the second block, and 

differentially faster for nonwords.   

In condition IIa, we observed a main effect of lexicality 

(words faster than nonwords), and a feedback by order of 

feedback interaction which separate 2 (lexicality: word vs. 

nonword) x 2 (feedback: truthful vs. false) within-subjects 

ANOVAs for each order of block presentation revealed to 

be the result of faster RTs in the second block of the 

experiment (truthful feedback first, feedback F1,31 = 51.00; 

false first, feedback: F1,30 = 34.23).   

In condition IIb, only the interaction effects were 

significant.  To explore these interactions further separate 2 
(lexicality: word vs. nonword) x 2 (feedback: truthful vs. 

false) within-subjects ANOVAs for each order of block 

presentation were effectuated.  When truthful feedback was 

presented first, all of the effects were significant (lexicality 

F1,27 = 11.34; feedback F1,27 = 16.18; interaction F1,27 = 

15.10), whereas there was only an effect of feedback when 

false feedback was presented first; these effects indicated 

that responses were faster in the second block, and  in the 

case of truthful feedback that responses were on average 

significantly faster for words,  and grew differently faster 

for nonwords during false feedback.    
 

Discussion 

 
Based on the yoked criteria shift theory of decision system 

adaptation we proposed and demonstrated via computational 

simulation, we derived a series of predicted accuracy and 

RT effects for each of the different feedback manipulations.  
In the accuracy data, the predicted effects were always 

present when both variants of false feedback were provided 

for nonwords; for words, the predicted effects of feedback 

were also observed, but only when false feedback was 

preceded by truthful feedback.  In the RT data, none of the 

predicted RT shifts occurred.  However, no unpredicted RT 

shifts running contrary to the yoked criteria shift account 

were observed either.  This suggests that participants did 

shift their decision criteria as predicted, but traded off 

variations in speed for greater variations in accuracy.   

In addition to this highly (though not perfectly) consistent 
adaptation predicted by the yoked criteria shifts, a number 

of other effects were observed throughout the different 

conditions with varying degrees of reliability.  In particular, 

there were several similarities in the types of effects 

observed when false feedback was provided to nonwords 

and words, with the former being a cleaner match to the 

simulation data.  These additional effects, although in some 

cases probably worthy of verification via replication, may 

provide an additional set of constraints for the development 

of more detailed models of decision system adaption. 

General Discussion 
 

Decision system adaptation to perceived changes in 

accuracy is critical in changing environments. The 

computational and behavioral results we have reported 

provide converging evidence that one simple yet powerful 

mechanism for effectuating such adaptations in a calibrated 

decision system are yoked shifts of decision criteria.   

In the present work, we have intentionally kept our 

simulation and behavioral analyses relatively simple so as to 

facilitate relating them to our theory.  We are currently 

examining whether some of the phenomena unexplained by 

the current simulation (e.g., predicted effects of feedback 
not occurring when false feedback is given to words before 

truthful feedback) could be accounted for by yoked criteria 

shifts if we equate the simulated referent trajectory to the 

stimuli classifications participants perceive to be correct, 

and by matching the wordlikeness distributions of the 

simulated word and nonword stimuli to those used in the 

behavioral experiment.  
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