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ABSTRACT 

The human brain continually generates electrical potentials representing neural 

communication.  These potentials can be measured at the scalp, and constitute the 

electroencephalogram (EEG).  When the EEG is time-locked to stimulation-- such as 

the presentation of a word--, and averaged over many such presentations, the Event-

Related Potential (ERP) is obtained.  The functional characteristics of components of 

the ERP are well understood, and some components represent processing that may 

differ uniquely from individual to individual-- such as the N400 component, which 

represents access to the semantic network. We applied several pattern classifiers to 

ERPs representing the response of individuals to a stream of text designed to be 

idiosyncratically familiar to different individuals.  Results indicate that there are robustly 

identifiable features of the ERP that enable labeling of ERPs as belonging to individuals 

with accuracy reliably above chance (in the range of 82-97%).  Further, these features 

are stable over time, as indicated by continued accurate identification of individuals from 

ERPs after a lag of up to six months.  Even better, the high degree of labeling accuracy 

achieved in all cases was achieved with the use of only 3 electrodes on the scalp-- the 

minimal possible number that can acquire clean data.  
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1.  Introduction 

The electroencephalogram (EEG) is a measure of post-synaptic brain activity that has 

recently received substantial attention as a potential biometric (e.g., Palaniappan & 

Mandic, 2005; 2007; review in Campisi & La Rocca, 2014). Here, we will extend this 

work by examining the feasibility of cognitive components of the Event-Related Potential 

(ERP) as a biometric measure.  Event-Related Potentials are obtained when the EEG is 

averaged time-locked to some stimulation of interest (e.g.,  presentation of a word).  

Individual components of the ERP have well understood functional characteristics (see 

Luck & Kappenman, 2011), that correspond to specific cognitive events.  When 

compared with the background EEG, this has the advantage that it is possible to make 

an analysis of the desired cognitive state of a user, and design a biometric challenge 

protocol that can tap that cognitive state.  Here, in particular, we will investigate a 

protocol that taps access to semantic memory.   

Semantic memory can be thought of as the network of concepts and connections 

between them that all individuals possess.  We argue that semantic memory is a system 

that, although generally similar across individuals, is likely to be highly individualized 

when examined in detail, and therefore likely to be able to provide a distinctive 

biometric.  To see why this is the case, consider the concepts [bee] and [anaphylaxis].  

Even when considering only these concepts, it is easy to imagine a number of plausible 

semantic networks including them across individuals.  For example, some individuals 

might be allergic to bees and therefore link these concepts strongly; some individuals 

might realize that bee allergies can cause anaphylaxis and therefore have a link 
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between them-- but a weaker link than that possessed by a person with a bee allergy--, 

and some individuals might not know what anaphylaxis is and therefore not represent it 

in memory.  Of course, there are many more concepts represented in semantic memory 

than just [bee] and [anaphylaxis], and the more concepts that are represented, the more 

opportunities that arise for there to be differences in how they are represented across 

people.  For example, as the pool of concepts grows from even just [bees, anaphylaxis] 

to [bees, anaphylaxis, clowns, cilantro, sharks, prawns, spiders], many more plausible 

combinations of mappings between concepts become possible, and it effectively 

becomes impossible, from a statistical perspective, that any two individuals will have an 

identical network.   

 While there are likely many neuro-cognitive networks that might differ between 

individuals besides the semantic network, semantic memory is an especially viable 

target for ERP biometrics because access to the semantic network is known to produce 

a robust deflection in the ERP, known as the N400 component.  The N400 is a negative 

wave that peaks around 400 ms post stimulus onset and has a centro-parietal maximum 

(see review in Kutas & Federmeier, 2011).  The N400 is known to represent the 

language comprehension system’s automatic attempt to access the semantic network 

(Laszlo & Federmeier, 2007; 2008; 2009; 2011; 2014).  One characteristic of the N400 

that is central here is that N400s elicited in response to items that individuals are 

unfamiliar with differ from N400s elicited in response to items that individuals are 

familiar with (Laszlo & Federmeier, 2007, 2011, 2014).  This is a useful characteristic of 

a potential biometric, because it means that when individuals are familiar with different 

subsets of items, those individuals will elicit different profiles of N400s.  Here, we will 
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make use of this feature by presenting participants with a stream of text that includes a 

large number of acronyms.  In previous work, we have demonstrated that it is extremely 

unlikely for any two individuals to be familiar with exactly the same subset of these 

items (Ruiz-Blondet et al., 2014).  Consequently, we expect the profile of N400s elicited 

by individuals exposed to these items to be different.  

In the preceding paragraphs, we introduced the concept of semantic memory, 

described a theoretical account under which semantic memory is likely to differ across 

individuals, and linked that account with a biomarker-- the N400 ERP component.  This 

process highlights the potential advantage of the use of ERPs as biometrics over the 

background EEG.  The background EEG is elicited regardless of what a participant is 

doing, meaning that there is reduced (or no) experimental control over the resultant data  

ERP biometrics, in contrast, have the potential to begin with principled theories about 

why a particular protocol should produce unique ERPs, and enable a focused analysis 

centered only on the component or components most likely to produce identifiable 

responses   

To guide the present work, we consider a theoretical framework for biometrics 

that requires the demonstration of four characteristics:  universality, collectability, 

uniqueness, and permanence (Jain, Ross, & Prabhakar 2004).  Universality refers to 

the necessity that, if a characteristic is to be used as a biometric, every person must 

possess that characteristic. This is is already established for EEG, as the lack of EEG is 

a clinical indicator of brain death (Wijdicks, 1995).  As ERPs represent the averaged 

EEG, universality is therefore established for ERPs as well.  Collectability refers to the 

requirement that a biometric measure must be possible (and, ideally, easy and 
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comfortable) to collect.  One of the principal issues that decreases the collectability of 

EEG (and, by extension ERP) biometrics is that many studies of EEG biometrics have 

demonstrated a need for data acquisition from a large array of electrodes in order to 

acheive > 90% identification accuracy (see review in Palaniappan & Mandic, 2007, see 

also La Rocca 2012).  To address this, here we will perform biometric identification on 

the basis of only 3 electrodes:  a reference, a ground for common mode rejection, and a 

single active sensor.  This is the minimum number of electrodes with which clean 

EEG/ERP data can be required, and thus maximizes the collectibility of this protocol on 

this metric.   

Permanence refers to the requirement that a biometric must be stable over time 

(see Brigham & Kumar, 2010, and Campisi & La Rocca, 2014, for review of the issue of 

permanence in EEG biometrics).  Here, we will explore this issue by asking participants 

to provide ERPs in three sessions with a gap of from between one week and six months 

between the first and final session (see also Ruiz-Blondet, Laszlo, & Jin, under review).   

Distinctiveness refers to the requirement that a biometric be different in each 

individual, and is seemingly the most difficult of the four requirements to assess. 

Distinctiveness is an unexplored topic in terms of the ERPs associated with semantic 

memory access, although it is widely accepted that there are quantifiable individual 

differences in brain organization or activity in response to tasks of this sort in general 

(e.g., Raz, Lindenberger, Rodrigue, Kennedy, & Head, et al.,  2005; La Rocca et al., 

2014; see also Khalifian & Laszlo, In Revision).  Here, we will assess distinctiveness by 

applying several pattern classifiers (more details below) to individuals’ ERP data, to 

determine whether ERPs are robustly identifiable via machine learning.   
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1.1  Difference from Past Approaches 

In utilizing the averaged ERP and the N400 component more specifically as the 

biometric measure, our approach to electrophysiological biometrics differs from 

prominent and successful biometric protocols that utilize the EEG (e.g., Palanappian & 

Mandic, 2005; 2007; La Rocca et al, 2014; Abdullah et al, 2010; La Rocca et al., 2012).  

As already discussed, we have taken this approach primarily because of what is known 

about the N400 component, but it is an approach that possibly has other benefits as 

well.  First, the ERP is less sensitive to background noise than is the ongoing EEG, 

which is a critical characteristic for applied use.  This is because any applied use of 

EEG/ERP biometrics is likely to occur in environments where there are many likely 

sources of electrical noise, for instance, from other electronic devices or lights.  In the 

ERP, electrical noise that is not time-locked to the signal of interest are likely to be at 

least partially reduced during averaging---a process that does not occur for analysis of 

the EEG.  While EEG can be digitally filtered to remove background noise in some 

particular frequency band, this is a process that uses the information of neighbor data 

points instead of adding in new data. In contrast, the averaging performed in ERP 

analysis removes the noise from all frequency bands by adding new data where the 

meaningful information will be enhanced while random noise will tend to zero. This 

means that the ERP may be more robust to noise, relative to EEG.  

Another issue with EEG is that to be stable enough for biometric analysis, it is 

necessary to record it for a relatively long duration to obtain sufficient data to first train 

and then test a classifier.  For example, Marcel and Millan (2007) used data collected 
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from 12 4-minute sessions, during which the task was altered every 15 seconds (for a 

review of other related studies, see Campisi & La Rocca, 2014).  Even in the best work, 

with respect to overall recording duration, La Rocca, et al., (2014) report one of the 

shortest duration recordings for EEG data: a 10-second recording as the critical test 

after 50 seconds of prior recording used for training.  Individual ERPs, in contrast, 

typically are only 1 second long, and semantic memory effects in particular are 

detectable from as early as 250 milliseconds (e.g., Laszlo & Federmeier 2014).  Even 

when 50-100 trials are averaged, this still means no more than approximately 1.5 

minutes of data recording.  Here, for example, we will analyze averages of 50 trials 

during training and testing, which corresponds to 50 seconds of data in each case (i.e., 

the training and testing classification is based on ERPs aggregated over several trials --

- we do not attempt single-trial recognition, although future work will be needed to 

determine how small a number of trials can still yield accurate recognition).  The data 

included for analysis, then, is therefore similar in quantity to that collected by the field-

leading work of La Rocca et al. (2014) and vastly less than that reported in Marcel and 

Millan (2014).  This difference in collectability and data set size is therefore a potential 

advantage of ERPs over EEG for biometric use.1 

 
                                                
1 For transparency, it should be noted that this description bears on the total duration of the recordings 
only (i.e., information content as a function of recording time).  Of course, such vastly different 
approaches differ on other characteristics as well, some of which may be for principled reasons and 
others not.  For example, the inter-trial interval in the present study, which was included for similarity to 
past ERP work on ERP components related to isolated word reading --- adds a small amount of total time 
to the experiment itself, even if no data from this “filler” period is included in the recording.  The duration 
of this “filler” period in obtaining clean classification results, however, has yet to be investigated to 
determine if it is necessary or not for the present aims.  Other methods, such as those employed by La 
Rocca et al. (2014) can record continuously, which offers efficiency over the present method in that 
respect.  However, those recordings also employed a 64 channel montage, which, if factoring in setup 
time over our approach, which requires only a single active electrode, would substantially increase the 
total duration of the experiment.  Additional work is clearly needed to equate “clock time” across these 
and other approaches. 
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1.2  Pattern Classification   

As a benchmark classifier, we employed support vector machines (SVM; 

Schölkopf & Smola, 2002; Milenova et al., 2005).  SVMs are known to be excellent 

pattern classifiers in many respects; however, SVMs were originally developed for the 

purpose of binary classification and suffer from practical challenges when extended to 

multi-class problems, as in the present case (for discussion, see Hsu & Lin, 2002).  

Here, in order to extract classifier performance from SVM, we transform the more 

difficult biometric identification problem (of labeling a token as belonging to one of a 

large number of users) to easier verification problem (of deciding whether a token 

belongs to one particular user or not). 

As a second benchmark, we will use a simple linear discriminant based on cross-

correlation.  Cross-correlation is a known method for quantifying the similarity between 

pairs of electrophysiological waveforms when classification is required (e.g., Chandaka, 

Chaterjee, & Munshee, 2009).  When used as the basis function for a linear 

discriminant, it is also a highly efficient algorithm when compared to either SVM or 

neural network classifiers (such as those we will describe next), because it does not 

require training in order to perform classifications and consequently requires little 

computational overhead.   

Finally, we will use two neural network classifiers.  The first is the Divergent 

Autoencoder (DIVA; Kurtz, 2007).  DIVA was originally developed as a cognitive model 

of human category learning, but has additional potential as a more general-purpose 

classifier for machine learning.  A Divergent Autoencoder is similar to a standard multi-

layer autoencoder, except that there is a separate output layer (“channel”) for each 
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category in the classification problem.  The key design principle is training the 

autoencoder to reconstruct the members of each category with the constraint that each 

output channel shares a common hidden layer. Classification outcomes are a function 

of reconstruction error on each output channel: an item is a good member of a class to 

the extent it can be recoded and decoded along the appropriate channel with minimal 

distortion.  The output channel that reconstructs an input with the least error provides its 

label to that input.   

The final method for classification we will implement is Naive Discriminant 

Learning. NDL is also a learning neural network approach, but for present purposes its 

primary advantage over DIVA (or other neural network approaches) is that it does not 

use back-propagation to learn its weights.  Instead, it relies on the Danks equilibrium 

equations (Danks, 2003) to discover optimal weights for input classification in one step.  

This characteristic of NDL allows it to retain the advantages of a learning classifier (e.g., 

the ability to emphasize some portions of the data over others) without one of the major 

pitfalls of large learning classifiers for applied use-- namely, lengthy training time due to 

iterative learning.    

The prior literature would seem to favor SVM and cross-correlation as the 

methods most likely to produce high accuracy results, as these two are gold-standard 

methods for classification (in the case of SVM) and comparison of electrical waveforms 

(in the case of cross-correlation).  However, the ability of the neural networks to learn 

may provide some advantages over cross-correlation, particularly if the relevant input-

output structure is nonlinear, and the ability of DIVA and NDL to natively handle multi-

way classification problems may provide them with an advantage over SVM.   
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2.  Methods 

The general schematic for data collection was as follows.  Participants came to the lab 

and read text silently to themselves while ERPs were collected.  A subset of these 

returned to the lab multiple times with intervening lags of one week to six months and 

performed the same task, with the same stimuli, in order to address permanence.  After 

all data were collected, classifiers were applied to quantify the distinctiveness of the 

resultant ERPs.  For the three non-SVM classifiers, the outputs of each classifier were 

transformed to rankings where possible labels for an ERP token was ranked from 0 to 

N-1 (where N = the number of participants).  The label ranked 0 was each classifier’s 

best guess as to which participant each token belonged to.  This method was applied 

identically to NDL, DIVA, and cross-correlation.  For each token presented to each 

classifier, then, we computed a identification accuracy, defined as (1 - [Rank of correct 

label / Number of participants]).  This method of quantifying accuracy reflects the idea 

that classifiers should be given more credit for ranking the correct label highly, even if 

the correct label is not given the top rank (e.g., Mitchell, Shinkareva, Carlson, Chang, 

Malve, et al., 2008).  For SVM we instead used a two-class, verification scenario. Here, 

each ERP could be classified either as authorized user or not.  SVM’s output was 

considered “correct” when it either 1) verified an authorized user’s token as a match or 

2) rejected an un-authorized user’s token as unauthorized.     

 

2.1  Data Acquisition (Event-Related Potentials) 
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Data were acquired following the methods of past studies that demonstrate differences 

on the N400 on the basis of individual acronym knowledge (Laszlo & Federmeier, 2007; 

2011; 2014; Laszlo, Stites, & Federmeier, 2012). ERPs were recorded from 45 adult 

participants (11 female, age range 18-25, mean age 19.12).  Of these 45, 30 

participated only once, 15 ( 10 female, age range 18-23, mean age  20.71) returned to 

the lab for a second session between 5 days and 40 days after the first session (mean 

12.73 days), and 9 (5 females, age range 18-23, mean age 20.22) returned for a third 

session, between 134 and 188 days after the first session (mean 156 days). The EEG 

was digitized at 6 midline electrode sites in addition to the reference, ground, and EOG 

channels; these corresponded roughly to fPz, Cz, Pz, Oz, O1 and O2 in the 

international 10-20 system. Only data from O2 was analyzed, as pilot work indicated 

this was the most robust channel (Ruiz-Blondet et al., 2013).  Ag/AgCl active 

amplification electrodes were used; interelectrode impedance was maintained at < 50 

Kohm (Laszlo, Ruiz-Blondet, Khalifian, Chu, & Jin, 2014).  Data were acquired with a 

hardware high pass filter (.016 Hz) to reduce the influence of DC shifts.  Participants 

viewed 75 acronyms intermixed with fillers from other lexical types.  For more details 

about the items and the task, see Laszlo & Federmeier (2007; 2011; 2014).  Acronyms 

were repeated once at a lag of 0, 2 or 3 intervening items.  This repetition allows for 

relatively homogenous (though not identical, due to repetition effects; Laszlo & 

Federmeier, 2007; 2011; Laszlo & Armstrong, 2014) but non-overlapping segmentation 

of the data into train and test corpora for machine learning: first responses to acronyms 

were used for training, and second responses were used for testing. ERPs were 

computed by averaging the data at each electrode, time-locked to the onset of each 
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acronym, on each of the two presentations.  Data were digitized at 500 Hz and contain 

a 100 ms pre-stimulus baseline; thus each 1.1 second long ERP includes 550 samples.  

We did not apply software filters or artifact rejection prior to pattern classification 

because pilot work demonstrated that neither of these measures positively impacted 

classifier accuracy and added time to the overall procedure.   

  

2.2 Pattern Classifiers 

During recording, a small number of trials were lost from some participants (e.g., due to 

movement artifact), but all participants retained at least 70 trials, so 70 random trials 

were selected from all participants to keep the size of each participant’s data set 

uniform.  The neural networks require multiple examples from each participant in order 

to learn input-output mappings robustly, so it was not sufficient to simply create 1 ERP 

from each participant for network training.  Instead, a bootstrapping procedure was 

used, where 100 ERPs were generated for each participant with a random 50 of that 

participant’s 70 trials selected each time.  After bootstrapping, 100 ERPs were available 

from each participant, for a total of 3000 (30 participants x 100 random averages).  

Bootstrapping  was applied to both the train and test data, meaning that 3000 averages 

were available for training, and a completely non-overlapping 3000 averages were 

available for testing.   

 

2.2.1 Cross-Correlation 

To classify by cross-correlation, we first computed the maximum absolute value of the 

cross-correlation between pairs of waveforms. Each of the 100 random averages for 
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each participant was cross-correlated with both 1) another average from that same 

participant (a self-self pair) and a random average from every other participant (a self-

other pair), for a total of 30 pairs per average.  The cross-correlations between pairs 

were then normalized to reduce variability caused by scalp thickness and other 

cognitive-unrelated events.  This operation was performed for each of the 100 averages 

of each of the 30 participants (i.e. 3000 times). Each time, the highest cross-correlation 

value received a rank of zero and the lowest value received a rank of 29. Then, 

identification accuracy for each of the 3000 test cases was 1 - [rank of correct pair / 

number of pairs (zero indexed)].  Thus, a “correct” response on each case would be for 

the self-self pair to be given a rank of 0, and all the self-other pairs be given a higher 

rank. The mean identification accuracy was the mean accuracy across the 3000 trials. 

95% confidence intervals on this mean were computed on the basis of the t-distribution.  

 

2.2.2 Divergent Autoencoder (DIVA) 

The DIVA network was a 550:200:550[30] feedforward autoencoder.  The 550 input 

units correspond to the 550 samples in each waveform.  A 200 unit hidden layer was 

used based on pilot simulations that determined that this was the smallest sized hidden 

layer that enabled near perfect (99% accuracy) learning of the training set.  The [30] 

signifies that, instead of having only one output layer, as in a standard autoencoder, 

there were 30 output layers, one for each participant.   

 During learning, hidden to output weights were adjusted only along the correct 

category channel as a function of the mean squared error across that channel’s output.  

The network was trained through 1000 iterations of the 3000 training examples; this was 
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determined to be a level that allowed excellent performance (>99% classification 

accuracy) on the training data without overfitting.  After these 1000 iterations, weights in 

the model were fixed. 

 At test, the model was presented with each of the 3000 test examples, and 

activation was allowed to propagate forward through the network.  Reconstruction error 

was measured on each channel.  The channels were then assigned ranks based on 

their output error.  Identification accuracy was computed as described above, with the 

accuracy for each of the 3000 test cases being 1 - [rank of correct channel] / [number of 

channels] (ranks and number of channels zero indexed); mean identification accuracy 

was given as the mean accuracy across the 3000 trials. 95% confidence intervals on 

this mean were computed on the basis of the t-distribution.  Figure 1 displays an 

example of an empirically derived ERP along with its best and worst DIVA 

reconstructions.   

 

2.2.3 Naive Discriminant Learning (NDL) 

The NDL classifier was trained by providing the 3000 training patterns as input across a 

550 unit input layer, and requiring the network to indicate its classification by activating 

one of 30 units in an output layer.  To speed classification, rather than rely on online 

(trial-by-trial) or batch (groups of trials) iterative learning methods, the Danks (2003) 

equations were employed to estimate the end-state of iterative learning using the 

classic Rescorla-Wagner (1972) discriminative learning algorithm, but in a single 

iteration.  Estimated weights at equilibrium were obtained using the implementation of 

NDL provided by Shaoul, Arppe, Hendrix, Milin, and Baayen (2014).   After training, 
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NDL correctly classified all of the participants on the basis of the input ERPs using a 

winner-take-all evaluation method.   

 To test the classification performance of NDL, the trained NDL network’s 

parameters were fixed and the 3000 patterns of testing data were presented.  Network 

output was then normalized and transformed into a ranked classification.  Identification 

accuracy and confidence intervals were computed identically as for DIVA. 

 

2.2.4 Support Vector Machines (SVM)  

Separate training and testing data sets were specifically designed for SVM. Here, a 

verification scenario was used (instead of the identification scenario above).  For this, 

87 tokens were selected from a participant (the authorized user), and compared with 3 

tokens from each of the other 29 participants (87 total, the intruders).  The SVM was 

implemented with an RBF kernel and σ=1000 as indicated by pilot work.  Across the 87 

tokens, the SVM’s output was considered correct if it verified an authorized user as 

being authorized (placed it in the authorized class), or indicated an intruder was 

unauthorized (placed it in the unauthorized class).  Mean accuracy was given as the 

number of correct classifications divided by the total number of classifications.  95% 

confidence intervals on the mean were computed on the t-distribution.   

 

3.  Results 

3.1 First session 

Figure 2 presents mean identification accuracies for cross-correlation, DIVA, and 

NDL, along with verification accuracy for SVM.  As visualized in the figure, mean 
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identification accuracy for cross-correlation was .92 (95% confidence interval:  0.92-

0.93).  Mean identification accuracy for DIVA was .89 (95% confidence interval:  0.89-

0.90).  Mean identification accuracy for NDL was .82 (95% confidence interval:  0.81-

0.83).  Finally, SVM’s mean verification accuracy was .83 (95% confidence interval:  

0.77-0.88).  The confidence intervals indicate that, with 95% confidence,  cross-

correlation was reliably the most accurate classifier, followed by DIVA, followed by NDL, 

with SVM’s accuracy overlapping that of NDL.   

 The null hypothesis for identification accuracy for the identification scenario is 

that the classifiers are assigning ranks to the correct class by chance, consequently the 

expected random accuracy is 50%. In the case of SVM, the null hypothesis for 

verification accuracy is also 50%, since each trial can be randomly classified as either 

authorized user or impostor. Clearly, all classifiers performed substantially better than 

chance.  To quantify this statistically in the 30 class classifiers, we computed the 

distribution of accuracies across 50 000 random permutations of the ranking matrix.  We 

then assigned p-values to each observed accuracy by determining the proportion of 

random accuracies that were higher than the observed accuracy for each classifier (an 

approximate randomization test).  The null hypothesis was rejected for all classifiers 

with p < .0001.  To quantify SVM’s verification accuracy, we compared the observed 

mean accuracy (.83) against a binomial distribution with a success probability of .5, 

which indicated that the observed mean would be observed by chance with p < .0001. 

 

3.2 Improving performance with a combination of models.   
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The separate examination of each of the models indicates that accurate 

classifications can be obtained by each one.  Perfect classification is, however, the 

ultimate aim for applied use of an ERP biometric.  To this end, we examined whether a 

combination of models could be used to improve overall classification performance.  

Assuming that each model accounts for a random subset of the total variability in the 

signal, and knowing that all of the models are at approximately 90% accuracy, the 

likelihood of two models failing on a given trial is only 1%.  Combining three models 

could further reduce the failure rate to 0.1%.  However, it is also possible that all of the 

models make errors on some same subset of difficult to classify data (i.e., that errors 

are distributed non-randomly).  If this is the case, examination of those difficult to 

classify data may reveal characteristics in the signal, and/or common aspects of the 

individual models, that can guide future work. 

To gain initial insight into these issues, we examined the mean identification 

accuracy for DIVA, NDL, and cross-correlation on the testing data at the trial level (SVM 

was excluded for the reasons outlined above).  In the first analysis, we calculated the 

maximum possible identification accuracy across all three models for each individual 

trial---the accuracy that is achieved if each trial is identified only by the model that 

provides the best classification of any of the models for that trial.  This establishes the 

upper bound for classification accuracy that could be established, in principle, by 

combining the different models (although this does not mean that a classifier could 

actually learn this optimal classification, an issue we visit next).  The results showed that 

mean maximum accuracy increased to 97.6% --- a substantial increase over the 

performance of the best single model (cross correlation, at 92%), but still below the 



19 

99.9% expected if the three models were each tapping a random portion of the overall 

variability.  

To provide a more realistic assessment of how the results from the different 

models could be combined, we developed a simple meta-classifier that integrated the 

results of the NDL, DIVA, and cross-correlation classifiers.  Given that cross-correlation 

performed the best of the three overall during testing, the meta-classifier’s default 

response when the first-ranked classification was not the same across the three 

algorithms was that of the cross-correlation classifier.  However, the cross-correlation 

classifier could be overridden if the two other classifiers both agreed on a different 

response.  This voting scheme aimed to capitalize on the fact that the errors committed 

by each algorithm were partially independent from one another.  Per this meta-classifier, 

identification accuracy increased to 93.7% (95% confidence interval: 93.6-93.7).   

 

3.3 Participant Level Classification-- Insights for Future Work 

One possibility as to why the meta-classifier did not perform to the theoretical ceiling 

limit is that there is a subset of trials or a subset of participants that are particularly 

difficult to classify, across all models.  A plot of maximum accuracy across the models 

for each participant clearly shows that this is the case (Figure 3).  Whereas for most 

participants, maximum accuracy was at ceiling, for a small number of participants---and 

participant 21, in particular---classification accuracy was, noticeably lower, meaning that 

no model could correctly classify this participant with 100% accuracy.  Inspection of the 

data for that participant indicates a possible explanation for this failure (see Figure 4).  It 

appears that participant 21 produced an ocular artifact in response to first presentations 
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of items that was not re-produced in response to second presentations, which would 

make the second presentation waveforms difficult to match to this participant’s first 

presentation waveforms for all classifiers.  Fortunately, such ocular artifacts also have a 

clear neural signature that is distinct from N400 activity, and which can be automatically 

detected and removed with a variety of algorithms (e.g., Gratton, Coles, and Donchin, 

1983; Jung, Makeig, Humphries, Lee, Mckeown, et al., 2000).  Consequently, one 

avenue of future work would be to include a provision in the classification algorithm to 

attempt ocular artifact correction for individuals classified poorly.   

 

3.4 Initial assessment of permanence 

Cross-correlation was shown to be the most accurate method for identification in the 

analysis above and is the least computationally expensive of the methods.  For these 

reasons, cross-correlation was the only method used to provide some initial insights into 

the permanence of our biometric.  Note that because of the smaller sample size of 

these assessments of repeatability, these data serve primarily to provide some basic 

validity that permanence may be achievable with this approach; additional more 

extensive work targeting this issue is clearly needed.  Nevertheless, these initial insights 

do provide reason to be optimistic in this respect: The mean identification accuracy 

when test tokens from a participant’s second ERP session were compared to training 

tokens from a participants’ first ERP session was 89% (95% confidence interval:  0.88 

to  0.90).  These results are better than chance at p < .0001 (the null hypothesis here 

being the same as for the analogous analyses in the single-session data).  The mean 

identification accuracy when test tokens from a participant’s 3rd ERP session were 
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compared to training tokens from the first ERP session was 93% without one outlier 

classified with 7% accuracy. (95% confidence interval:  0.87 to 0.99).  Again, these 

results are better than chance at p < .0001.  Further, the mean accuracy for the third 

session is within the confidence interval of accuracy for the first session, indicating that 

classification accuracy did not decline significantly over time.  Figure 5 displays cross 

correlation identification accuracy over time; Figure 2 places these results side-by-side 

with the results of the single-session analysis.    Inspection of the data from the 

individual participants who participated in a third session also showed that several (4 

out of 9) are still being classified with perfect accuracy after this extended period of 

time.   

 

4.  Discussion 

We set out to address the collectibility, permanence, and uniqueness of a novel method 

for biometrics that makes use of the averaged Event-Related Potential.  We were 

motivated in this exploration by an interest in making use of a vast literature from 

cognitive neuroscience that provides understanding of the cognitive events that elicit the 

ERP-- in particular, access to semantic memory-- to inform biometric design.  We 

reasoned that semantic memory was a cognitive system likely to vary uniquely across 

individuals, and that designing a challenge protocol to tap semantic memory directly 

could result in a highly accurate biometric. 

 To address uniqueness, we applied several classifiers to the ERP biometrics.  All 

were able to classify the data with accuracy far above chance.  The cross-correlation 

classifier was numerically the strongest, with an identification accuracy of 92%, and the 



22 

meta-classifier was able to reach an accuracy of 97%.  Worthy of particular emphasis, 

this high accuracy was achieved in a relatively collectable protocol, that is, one where 

data from only 50 seconds of recording from only one active sensor was used for 

training and testing of the classifiers.  This is at least comparable and in a number of 

cases substantially higher accuracy than has been achieved with a single sensor in 

many past EEG biometric applications.  For instance, Palanippan & Mandic (2007) 

report only 13% accuracy when using only one electrode.  More recently, Abdullah et al. 

(2010) reported classification accuracies in the 70% - 87% range with only one channel 

and needed data from four channels to obtain comparable accuracy to that reported 

here.  Similarly, Riera, Soria-Frisch, Caparrini, Grau, & Ruffini (2007; see also Su et al., 

2014) achieved comparable accuracy to ours (error rates of 3.4%) with EEG recordings 

lasting 2-4 minutes (see Campisi & La Rocca, 2014, for a review of 16 other recent 

articles, of which only those with more electrodes show considerably better 

performance, even ignoring the brevity of our recording time).  Thus, the ERP biometric 

explored here seems to be at least on par with field-leading work in EEG biometrics in 

terms of both uniqueness and collectability.   

To address permanence, we asked a subset of participants to return to the lab 

between a week and six months after their first session.   Figure 5 displays classification 

accuracy over time; in fact, classification accuracy for some participants remained as 

high as 100% even after 178 days.  These results are consistent with  predictions from 

the semantic memory literature, which suggest that this particular type of memory 

should be relatively stable over time, not sensitive to strong interference from new 
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knowledge on old knowledge, and degrade gracefully when memories are lost 

(McClelland et al., 1995; O’Reilly, 2011; Rogers & McClelland, 2003).  

 

4.1 Future Work 

Of course, even the 97% accuracy attained by the meta-classifier is below the optimally 

100% accuracy that would be desirable for applied biometric use.  Additionally, the one 

active sensor we analyzed data from, at O2, is located over the back of the head, and 

therefore sits atop hair on most people; this requires the application of electrolytic gel for 

adequate signal quality.  Both the collectability and the uniqueness of the ERP biometric 

could therefore still bear improvement. 

Regarding collectability, it would be beneficial to be able to record the ERP 

biometric from a site  that does not typically have hair on it (e.g., above the eyes, see 

Riera et al., 2007; Su et al., 2014), so that there is no need for electrolytic gel.  To this 

end, we are currently conducting an investigation of ERP biometrics using a higher 

density electrode montage than that used here, in order to see how ERP biometric 

accuracy varies across different sites on the scalp. 

Regarding uniqueness, the use of acronyms as challenge stimuli here was 

largely motivated by our own prior work, and, as is necessarily the case for a first step in 

any investigation, may not constitute the optimal set of stimuli for eliciting individuating 

brain responses.  Consequently, our ongoing work examines whether other categories 

of stimuli may be able to elicit more unique responses than those elicited by acronyms.  

Relatedly: here items were presented multiple times to each participant.  This was done 

partly to ensure compatibility with past work, and partly to create similar, but non-



24 

overlapping, train and test data sets.  However, the repetition of stimuli raises two 

important questions related to long-term uniqueness of challenge protocols of this type:  

will participants’ neural responses be experience dependent, and actually be changed 

over time by repeated exposure in this protocol and others like it?  And, how robust will 

the response to any particular item be over a time frame longer than the 6 months 

tested here, given that each participant’s experience outside the lab is unpredictable? 

As pertains to the first question, the neural mechanism of N400 repetition effects 

is well enough understood to be instantiated in an explicit computational model (Laszlo 

& Armstrong, 2014), and seems to be the result of short-term resource depletion, rather 

than substantive changes to long term memory.  This suggests that N400 responses to 

repetitions of items over multiple sessions should not change dramatically (as is also 

suggested by the permanence data reported here).  In agreement with this analysis, 

N400 repetition effects for 2 repetitions are not typically shown to be different than N400 

repetition effects for 3 or more repetitions (e.g., Young and Rugg, 1992) even within a 

session, let alone across recording sessions when cellular resources are able to 

replenish.  Thus, there are good theoretical and some empirical reasons to believe that 

multiple presentations of challenge items will not be deleterious to ERP biometric 

accuracy, but this is ultimately still an empirical question which we plan to address in 

future work through examination of ERP biometric identification accuracy at even more 

remote time points and with even more repetitions of items.   

The question of whether an individual’s experience outside the lab might 

deleteriously affect N400 biometric accuracy is also an important one.  As already 

discussed, numerous investigations in the field of formal semantics suggest that the 
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semantic network is:  relatively stable over time, not sensitive to strong interference 

from new knowledge on old knowledge, and degrades gracefully when memories are 

lost (McClelland et al., 1995; O’Reilly, 2011; Rogers & McClelland, 2003). However, we 

nonetheless aim in future work to investigate the use of ERP biometrics based on 

components of the ERP that are likely to be even less sensitive to experience, such as 

early visual components representing the encoding of line segments (which are known 

to be very stable over time, Hubel & Weisel, 1968).  These components are known to be 

sourced in the early visual cortices, and it is established that there are substantial 

individual differences in the cortical folding of these areas (e.g., Dougherty, Koch, 

Brewer, Fischer, Modersitzki, & Wandell, 2003; Shwarzkopf, Song, & Rees, 2010).  This 

anatomical variability should be expected to increase the uniqueness of ERP biometrics 

based on early visual components, while being entirely unrelated to experience.  Once 

again, the process of selection of early visual components as possible ERP biometrics 

highlights an advantage of ERPs over EEG biometrics:  where it was desirable to 

identify a measure that would be relatively stable over time regardless of experience, 

visual processing was a strong candidate and, knowing the correlates of early visual 

processing in the ERP, it is possible to select both stimuli and spatial and temporal 

regions of interest for analysis in a principled manner.   

 

5.  Conclusions   

Here, we investigated, for the first time in the literature, the use of an ERP 

biometric based on the uniqueness of individual’s semantic networks and resultant 

N400 effects.  We demonstrated identification accuracy that was robustly above chance 
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even when only 1 active sensor and 50 seconds of data were used for classification, 

and we further demonstrated that some individuals could still be identified with perfect 

accuracy even after as long as six months.  This work thus constitutes an encouraging 

proof-of-concept for the use of ERP biometrics and has yielded a number of targeted 

directions for further refinement.   
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Figure Captions 

Figure 1:  Sample data and DIVA reconstructions.  Left:  A true ERP elicited by 

Participant 0.  Center:  The best DIVA reconstruction of that ERP.  Right:  The worst 

DIVA reconstruction of that ERP.  The best DIVA reconstruction appears as a slightly 

filtered version of the true ERP, with early component activity emphasized (grey box).  
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Figure 2: Accuracy values for the four different classifiers, the meta-classifier and the 

permanence data for 2nd and 3rd sessions.  Error bars denote 95% confidence 

intervals on the means. 

 

Figure 3.  Maximum classification accuracy across classifiers, by participant.  Error bars 

denote the standard error of the mean.  The participant with the lowest classification 

accuracy is colored in black.  Note that many participants are classified with 100% 

accuracy across models.   

 

Figure 4. Sample train and test data for a well classified participant (participant 4, left) 

and the most poorly classified participant in the study (participant 21, right).  It is clear 

that Participant 21 is difficult to classify due to the presence of an ocular artifact (dashed 

box) present in only the train data.  Participant 4 is classified with 100% accuracy 

across trials.   

 

Figure 5.  Cross-correlation identification accuracy over time.  Each dot represents a 

single participant.  The majority of participants are still very accurately classified with a 

delay between first and last session of as much as 178 days. 
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